{"title":"均匀无限立方平面图","authors":"Benedikt Stufler","doi":"10.3150/22-bej1568","DOIUrl":null,"url":null,"abstract":"We prove that the random simple cubic planar graph $\\mathsf{C}_n$ with an even number $n$ of vertices admits a novel uniform infinite cubic planar graph (UICPG) as quenched local limit. We describe how the limit may be constructed by a series of random blow-up operations applied to the dual map of the type~III Uniform Infinite Planar Triangulation established by Angel and Schramm (Comm. Math. Phys., 2003). Our main technical lemma is a contiguity relation between $\\mathsf{C}_n$ and a model where the networks inserted at the links of the largest $3$-connected component of $\\mathsf{C}_n$ are replaced by independent copies of a specific Boltzmann network. We prove that the number of vertices of the largest $3$-connected component concentrates at $\\kappa n$ for $\\kappa \\approx 0.85085$, with Airy-type fluctuations of order $n^{2/3}$. The second-largest component is shown to have significantly smaller size $O_p(n^{2/3})$.","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The uniform infinite cubic planar graph\",\"authors\":\"Benedikt Stufler\",\"doi\":\"10.3150/22-bej1568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the random simple cubic planar graph $\\\\mathsf{C}_n$ with an even number $n$ of vertices admits a novel uniform infinite cubic planar graph (UICPG) as quenched local limit. We describe how the limit may be constructed by a series of random blow-up operations applied to the dual map of the type~III Uniform Infinite Planar Triangulation established by Angel and Schramm (Comm. Math. Phys., 2003). Our main technical lemma is a contiguity relation between $\\\\mathsf{C}_n$ and a model where the networks inserted at the links of the largest $3$-connected component of $\\\\mathsf{C}_n$ are replaced by independent copies of a specific Boltzmann network. We prove that the number of vertices of the largest $3$-connected component concentrates at $\\\\kappa n$ for $\\\\kappa \\\\approx 0.85085$, with Airy-type fluctuations of order $n^{2/3}$. The second-largest component is shown to have significantly smaller size $O_p(n^{2/3})$.\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/22-bej1568\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/22-bej1568","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
We prove that the random simple cubic planar graph $\mathsf{C}_n$ with an even number $n$ of vertices admits a novel uniform infinite cubic planar graph (UICPG) as quenched local limit. We describe how the limit may be constructed by a series of random blow-up operations applied to the dual map of the type~III Uniform Infinite Planar Triangulation established by Angel and Schramm (Comm. Math. Phys., 2003). Our main technical lemma is a contiguity relation between $\mathsf{C}_n$ and a model where the networks inserted at the links of the largest $3$-connected component of $\mathsf{C}_n$ are replaced by independent copies of a specific Boltzmann network. We prove that the number of vertices of the largest $3$-connected component concentrates at $\kappa n$ for $\kappa \approx 0.85085$, with Airy-type fluctuations of order $n^{2/3}$. The second-largest component is shown to have significantly smaller size $O_p(n^{2/3})$.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.