Yuquan Zhang , Chen Xu , Rongxiang Du , Qingchen Kong , Daoliang Li , Chunhong Liu
{"title":"MSIF-MobileNetV3:一种改进的基于多尺度信息融合的鱼类摄食行为分析MobileNetV3","authors":"Yuquan Zhang , Chen Xu , Rongxiang Du , Qingchen Kong , Daoliang Li , Chunhong Liu","doi":"10.1016/j.aquaeng.2023.102338","DOIUrl":null,"url":null,"abstract":"<div><p>Assessing the intensity of fish feeding activity using fish feeding behavior can help farmers efficiently decide on the amount of feeding bait. However, accurate extraction of fish feeding behavior features is difficult because of the small area of fish in the image and the randomness of fish swimming. To address this problem, an improved MobileNetV3 network, namely multi-scale information fusion (MSIF)-MobileNetV3, was proposed for analyzing the fish feeding behavior. Specifically, MSIF is a novel channel attention module used to replace the Squeeze-and-Excitation (SE) module that improves the attention of the model to fish schools behavior in feeding images using spatial information integration and multi-scale feature fusion. To evaluate the effectiveness of the proposed method, its performance was compared with that of the MobileNetV3 network optimized using multiple training strategies and other classical convolutional neural networks. It was trained and tested using a self-built dataset, and the experimental results showed that the MSIF-MobileNetV3 network using a basic training strategy obtained an optimal classification accuracy of 96.4 % on the test set. Thus, by analyzing the feeding activity of fish, the proposed method can assist in the automatic selection of bait feed under factory farming conditions.</p></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"102 ","pages":"Article 102338"},"PeriodicalIF":3.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MSIF-MobileNetV3: An improved MobileNetV3 based on multi-scale information fusion for fish feeding behavior analysis\",\"authors\":\"Yuquan Zhang , Chen Xu , Rongxiang Du , Qingchen Kong , Daoliang Li , Chunhong Liu\",\"doi\":\"10.1016/j.aquaeng.2023.102338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Assessing the intensity of fish feeding activity using fish feeding behavior can help farmers efficiently decide on the amount of feeding bait. However, accurate extraction of fish feeding behavior features is difficult because of the small area of fish in the image and the randomness of fish swimming. To address this problem, an improved MobileNetV3 network, namely multi-scale information fusion (MSIF)-MobileNetV3, was proposed for analyzing the fish feeding behavior. Specifically, MSIF is a novel channel attention module used to replace the Squeeze-and-Excitation (SE) module that improves the attention of the model to fish schools behavior in feeding images using spatial information integration and multi-scale feature fusion. To evaluate the effectiveness of the proposed method, its performance was compared with that of the MobileNetV3 network optimized using multiple training strategies and other classical convolutional neural networks. It was trained and tested using a self-built dataset, and the experimental results showed that the MSIF-MobileNetV3 network using a basic training strategy obtained an optimal classification accuracy of 96.4 % on the test set. Thus, by analyzing the feeding activity of fish, the proposed method can assist in the automatic selection of bait feed under factory farming conditions.</p></div>\",\"PeriodicalId\":8120,\"journal\":{\"name\":\"Aquacultural Engineering\",\"volume\":\"102 \",\"pages\":\"Article 102338\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquacultural Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144860923000250\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860923000250","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
MSIF-MobileNetV3: An improved MobileNetV3 based on multi-scale information fusion for fish feeding behavior analysis
Assessing the intensity of fish feeding activity using fish feeding behavior can help farmers efficiently decide on the amount of feeding bait. However, accurate extraction of fish feeding behavior features is difficult because of the small area of fish in the image and the randomness of fish swimming. To address this problem, an improved MobileNetV3 network, namely multi-scale information fusion (MSIF)-MobileNetV3, was proposed for analyzing the fish feeding behavior. Specifically, MSIF is a novel channel attention module used to replace the Squeeze-and-Excitation (SE) module that improves the attention of the model to fish schools behavior in feeding images using spatial information integration and multi-scale feature fusion. To evaluate the effectiveness of the proposed method, its performance was compared with that of the MobileNetV3 network optimized using multiple training strategies and other classical convolutional neural networks. It was trained and tested using a self-built dataset, and the experimental results showed that the MSIF-MobileNetV3 network using a basic training strategy obtained an optimal classification accuracy of 96.4 % on the test set. Thus, by analyzing the feeding activity of fish, the proposed method can assist in the automatic selection of bait feed under factory farming conditions.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints