在病理学和良好行为之间——驯服数学的可能基础

IF 0.1 0 PHILOSOPHY
Angelo-Vlad Moldovan
{"title":"在病理学和良好行为之间——驯服数学的可能基础","authors":"Angelo-Vlad Moldovan","doi":"10.24193/subbphil.2022.sp.iss.04","DOIUrl":null,"url":null,"abstract":"\"An in-depth examination of the foundations of mathematics reveals how its treatment is centered around the topic of “unique foundation vs. no need for a foundation” in a traditional setting. In this paper, I show that by applying Shelah’s stability procedures to mathematics, we confine ourselves to a certain section that manages to escape the Gödel phenomenon and can be classified. We concentrate our attention on this mainly because of its tame nature. This result makes way for a new approach in foundations through model-theoretic methods. We then cover Penelope Maddy’s “foundational virtues” and what it means for a theory to be foundational. Having explored what a tame foundation can amount to, we argue that it can fulfil some of Maddy’s foundational qualities. In the last part, we will examine the consequences of this new paradigm – some philosophical in nature – on topics like philosophy of mathematical practice, the incompleteness theorems and others. Keywords: foundations of mathematics, tame mathematics, clarity-based knowledge, philosophy of mathematical practice, incompleteness theorems \"","PeriodicalId":40516,"journal":{"name":"Studia Universitatis Babes-Bolyai Philosophia","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Between Pathology and Well-Behaviour – A Possible Foundation for Tame Mathematics\",\"authors\":\"Angelo-Vlad Moldovan\",\"doi\":\"10.24193/subbphil.2022.sp.iss.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"An in-depth examination of the foundations of mathematics reveals how its treatment is centered around the topic of “unique foundation vs. no need for a foundation” in a traditional setting. In this paper, I show that by applying Shelah’s stability procedures to mathematics, we confine ourselves to a certain section that manages to escape the Gödel phenomenon and can be classified. We concentrate our attention on this mainly because of its tame nature. This result makes way for a new approach in foundations through model-theoretic methods. We then cover Penelope Maddy’s “foundational virtues” and what it means for a theory to be foundational. Having explored what a tame foundation can amount to, we argue that it can fulfil some of Maddy’s foundational qualities. In the last part, we will examine the consequences of this new paradigm – some philosophical in nature – on topics like philosophy of mathematical practice, the incompleteness theorems and others. Keywords: foundations of mathematics, tame mathematics, clarity-based knowledge, philosophy of mathematical practice, incompleteness theorems \\\"\",\"PeriodicalId\":40516,\"journal\":{\"name\":\"Studia Universitatis Babes-Bolyai Philosophia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis Babes-Bolyai Philosophia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbphil.2022.sp.iss.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis Babes-Bolyai Philosophia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbphil.2022.sp.iss.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

对数学基础的深入研究揭示了它的处理是如何围绕传统环境中“独特基础vs.不需要基础”的主题展开的。在本文中,我表明,通过将Shelah的稳定性过程应用于数学,我们将自己限制在设法逃避Gödel现象并可以分类的某个部分。我们把注意力集中在这一点上,主要是因为它是温和的。这一结果为用模型理论方法研究地基开辟了一条新的途径。然后,我们将介绍Penelope Maddy的“基础美德”,以及理论作为基础的意义。在探索了一个温和的基金会可以达到什么程度之后,我们认为它可以满足Maddy的一些基本品质。在最后一部分,我们将研究这种新范式的后果——本质上是哲学的——在数学实践哲学、不完备定理等主题上的后果。关键词:数学基础、驯服数学、明确性知识、数学实践哲学、不完备性定理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Between Pathology and Well-Behaviour – A Possible Foundation for Tame Mathematics
"An in-depth examination of the foundations of mathematics reveals how its treatment is centered around the topic of “unique foundation vs. no need for a foundation” in a traditional setting. In this paper, I show that by applying Shelah’s stability procedures to mathematics, we confine ourselves to a certain section that manages to escape the Gödel phenomenon and can be classified. We concentrate our attention on this mainly because of its tame nature. This result makes way for a new approach in foundations through model-theoretic methods. We then cover Penelope Maddy’s “foundational virtues” and what it means for a theory to be foundational. Having explored what a tame foundation can amount to, we argue that it can fulfil some of Maddy’s foundational qualities. In the last part, we will examine the consequences of this new paradigm – some philosophical in nature – on topics like philosophy of mathematical practice, the incompleteness theorems and others. Keywords: foundations of mathematics, tame mathematics, clarity-based knowledge, philosophy of mathematical practice, incompleteness theorems "
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信