{"title":"局部齐次非梯度拟爱因斯坦3-流形","authors":"Alice Lim","doi":"10.1515/advgeom-2021-0036","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially m-quasi Einstein and Einstein.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":"22 1","pages":"79 - 93"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Locally homogeneous non-gradient quasi-Einstein 3-manifolds\",\"authors\":\"Alice Lim\",\"doi\":\"10.1515/advgeom-2021-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially m-quasi Einstein and Einstein.\",\"PeriodicalId\":7335,\"journal\":{\"name\":\"Advances in Geometry\",\"volume\":\"22 1\",\"pages\":\"79 - 93\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/advgeom-2021-0036\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this paper, we classify the compact locally homogeneous non-gradient m-quasi Einstein 3- manifolds. Along the way, we also prove that given a compact quotient of a Lie group of any dimension that is m-quasi Einstein, the potential vector field X must be left invariant and Killing. We also classify the nontrivial m-quasi Einstein metrics that are a compact quotient of the product of two Einstein metrics. We also show that S1 is the only compact manifold of any dimension which admits a metric which is nontrivially m-quasi Einstein and Einstein.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.