G. Balakishan, G. Kumaraswamy, Vykunthapu Narayanarao, Pagilla Shankaraiah
{"title":"无Lewis酸/无碱合成2-芳基硫和硒基苯并噻唑/噻唑和咪唑的策略","authors":"G. Balakishan, G. Kumaraswamy, Vykunthapu Narayanarao, Pagilla Shankaraiah","doi":"10.1515/hc-2020-0119","DOIUrl":null,"url":null,"abstract":"Abstract A Cu(II)-catalyzed Csp2-Se and Csp2-Sulfur bond formation was achieved with moderate to good yields without the aid of Lewis acid and base. The reaction is compatible with a wide range of heterocycles such as benzothiazole, thiazole, and imidazole. Also, this typical protocol is found to be active in thio-selenation via S-H activation. Additionally, we proposed a plausible mechanistic pathway involving Cu(III) putative intermediate.","PeriodicalId":12914,"journal":{"name":"Heterocyclic Communications","volume":"27 1","pages":"17 - 23"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/hc-2020-0119","citationCount":"4","resultStr":"{\"title\":\"Lewis acid / Base-free Strategy for the Synthesis of 2-Arylthio and Selenyl Benzothiazole / Thiazole and Imidazole\",\"authors\":\"G. Balakishan, G. Kumaraswamy, Vykunthapu Narayanarao, Pagilla Shankaraiah\",\"doi\":\"10.1515/hc-2020-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A Cu(II)-catalyzed Csp2-Se and Csp2-Sulfur bond formation was achieved with moderate to good yields without the aid of Lewis acid and base. The reaction is compatible with a wide range of heterocycles such as benzothiazole, thiazole, and imidazole. Also, this typical protocol is found to be active in thio-selenation via S-H activation. Additionally, we proposed a plausible mechanistic pathway involving Cu(III) putative intermediate.\",\"PeriodicalId\":12914,\"journal\":{\"name\":\"Heterocyclic Communications\",\"volume\":\"27 1\",\"pages\":\"17 - 23\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/hc-2020-0119\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heterocyclic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/hc-2020-0119\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heterocyclic Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/hc-2020-0119","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Lewis acid / Base-free Strategy for the Synthesis of 2-Arylthio and Selenyl Benzothiazole / Thiazole and Imidazole
Abstract A Cu(II)-catalyzed Csp2-Se and Csp2-Sulfur bond formation was achieved with moderate to good yields without the aid of Lewis acid and base. The reaction is compatible with a wide range of heterocycles such as benzothiazole, thiazole, and imidazole. Also, this typical protocol is found to be active in thio-selenation via S-H activation. Additionally, we proposed a plausible mechanistic pathway involving Cu(III) putative intermediate.
期刊介绍:
Heterocyclic Communications (HC) is a bimonthly, peer-reviewed journal publishing preliminary communications, research articles, and reviews on significant developments in all phases of heterocyclic chemistry, including general synthesis, natural products, computational analysis, considerable biological activity and inorganic ring systems. Clear presentation of experimental and computational data is strongly emphasized. Heterocyclic chemistry is a rapidly growing field. By some estimates original research papers in heterocyclic chemistry have increased to more than 60% of the current organic chemistry literature published. This explosive growth is even greater when considering heterocyclic research published in materials science, physical, biophysical, analytical, bioorganic, pharmaceutical, medicinal and natural products journals. There is a need, therefore, for a journal dedicated explicitly to heterocyclic chemistry and the properties of heterocyclic compounds.