O. G. Devoino, E. E. Feldshtein, A. Y. Grigoriev, V. L. Basinyuk, M. A. Kardapolava, I. M. Kosiakova
{"title":"光纤激光熔覆br7n6f青铜涂层的摩擦学特性","authors":"O. G. Devoino, E. E. Feldshtein, A. Y. Grigoriev, V. L. Basinyuk, M. A. Kardapolava, I. M. Kosiakova","doi":"10.3103/S1068366623010038","DOIUrl":null,"url":null,"abstract":"<div><div><h3>\n <b>Abstract</b>—</h3><p>The tribotechnical characteristics of coatings based on bronze BrA7H6F after melting with a fiber laser have been studied. Changes of instant friction coefficient, temperature in the friction zone, and wear intensity depending on technology and conditions of coating deposition are considered. Research was carried out on an A-135 tribotester under the scheme of a roller–cradle under the conditions of concentrated contact and high loads. Analysis of wear character and friction surface topography was carried out by electronic microstamping methods. Laser melting provided increase in wear resistance of coatings by 1.5–2 times in comparison with plasma spraying; wear of rubbing surface of coatings increases by 1.3–5 times at an increase of force of loading by 2 times. It is shown that in cases of plasma spraying and laser melting with high energy density of the laser beam on the friction surface the sponge-capillary effect occurs. In conditions of low energy density, the mentioned effect disappears, and plastic flow and adhesive bonding of bronze with the counter-body material (hardened steel 45) is observed on the worn surface.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribotechnical Characteristics of Coatings Based on Bronze BRA7N6F after Melting by a Fiber Laser\",\"authors\":\"O. G. Devoino, E. E. Feldshtein, A. Y. Grigoriev, V. L. Basinyuk, M. A. Kardapolava, I. M. Kosiakova\",\"doi\":\"10.3103/S1068366623010038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><h3>\\n <b>Abstract</b>—</h3><p>The tribotechnical characteristics of coatings based on bronze BrA7H6F after melting with a fiber laser have been studied. Changes of instant friction coefficient, temperature in the friction zone, and wear intensity depending on technology and conditions of coating deposition are considered. Research was carried out on an A-135 tribotester under the scheme of a roller–cradle under the conditions of concentrated contact and high loads. Analysis of wear character and friction surface topography was carried out by electronic microstamping methods. Laser melting provided increase in wear resistance of coatings by 1.5–2 times in comparison with plasma spraying; wear of rubbing surface of coatings increases by 1.3–5 times at an increase of force of loading by 2 times. It is shown that in cases of plasma spraying and laser melting with high energy density of the laser beam on the friction surface the sponge-capillary effect occurs. In conditions of low energy density, the mentioned effect disappears, and plastic flow and adhesive bonding of bronze with the counter-body material (hardened steel 45) is observed on the worn surface.</p></div></div>\",\"PeriodicalId\":633,\"journal\":{\"name\":\"Journal of Friction and Wear\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Friction and Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1068366623010038\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366623010038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Tribotechnical Characteristics of Coatings Based on Bronze BRA7N6F after Melting by a Fiber Laser
Abstract—
The tribotechnical characteristics of coatings based on bronze BrA7H6F after melting with a fiber laser have been studied. Changes of instant friction coefficient, temperature in the friction zone, and wear intensity depending on technology and conditions of coating deposition are considered. Research was carried out on an A-135 tribotester under the scheme of a roller–cradle under the conditions of concentrated contact and high loads. Analysis of wear character and friction surface topography was carried out by electronic microstamping methods. Laser melting provided increase in wear resistance of coatings by 1.5–2 times in comparison with plasma spraying; wear of rubbing surface of coatings increases by 1.3–5 times at an increase of force of loading by 2 times. It is shown that in cases of plasma spraying and laser melting with high energy density of the laser beam on the friction surface the sponge-capillary effect occurs. In conditions of low energy density, the mentioned effect disappears, and plastic flow and adhesive bonding of bronze with the counter-body material (hardened steel 45) is observed on the worn surface.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.