{"title":"关于Erdös-Rényi极限定理中异常集的注记","authors":"Chuntai Liu","doi":"10.1007/s43034-023-00294-w","DOIUrl":null,"url":null,"abstract":"<div><p>For <span>\\(x\\in [0,1]\\)</span>, the run-length function <span>\\(r_n(x)\\)</span> is defined as the length of longest run of 1’s among the first <i>n</i> dyadic digits in the dyadic expansion of <i>x</i>. We study the Hausdorff dimension of the exceptional set in Erdös–Rényi limit theorem. Let <span>\\(\\varphi :{{\\mathbb {N}}}\\rightarrow (0,\\infty )\\)</span> be a monotonically increasing function with <span>\\(\\lim _{n\\rightarrow \\infty }\\varphi (n)=\\infty \\)</span> and <span>\\(0\\le \\alpha \\le \\beta \\le \\infty \\)</span>, define </p><div><div><span>$$\\begin{aligned} E_{\\alpha ,\\beta }^\\varphi =\\Big \\{x\\in [0,1]:\\, \\liminf _{n\\rightarrow \\infty } \\dfrac{r_n(x)}{\\varphi (n)}=\\alpha , \\limsup _{n\\rightarrow \\infty } \\frac{r_n(x)}{\\varphi (n)}=\\beta \\Big \\}. \\end{aligned}$$</span></div></div><p>We prove that <span>\\(E_{\\alpha ,\\beta }^\\varphi \\)</span> has Hausdorff dimension one if <span>\\(\\lim _{n,p\\rightarrow \\infty }\\frac{\\varphi (n+p)-\\varphi (n)}{p}=0\\)</span> and that <span>\\(E_{0,\\infty }^\\varphi \\)</span> is residual in [0,1] when <span>\\(\\liminf _{n\\rightarrow {\\infty }}\\frac{\\varphi (n)}{n}=0\\)</span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on exceptional sets in Erdös–Rényi limit theorem\",\"authors\":\"Chuntai Liu\",\"doi\":\"10.1007/s43034-023-00294-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span>\\\\(x\\\\in [0,1]\\\\)</span>, the run-length function <span>\\\\(r_n(x)\\\\)</span> is defined as the length of longest run of 1’s among the first <i>n</i> dyadic digits in the dyadic expansion of <i>x</i>. We study the Hausdorff dimension of the exceptional set in Erdös–Rényi limit theorem. Let <span>\\\\(\\\\varphi :{{\\\\mathbb {N}}}\\\\rightarrow (0,\\\\infty )\\\\)</span> be a monotonically increasing function with <span>\\\\(\\\\lim _{n\\\\rightarrow \\\\infty }\\\\varphi (n)=\\\\infty \\\\)</span> and <span>\\\\(0\\\\le \\\\alpha \\\\le \\\\beta \\\\le \\\\infty \\\\)</span>, define </p><div><div><span>$$\\\\begin{aligned} E_{\\\\alpha ,\\\\beta }^\\\\varphi =\\\\Big \\\\{x\\\\in [0,1]:\\\\, \\\\liminf _{n\\\\rightarrow \\\\infty } \\\\dfrac{r_n(x)}{\\\\varphi (n)}=\\\\alpha , \\\\limsup _{n\\\\rightarrow \\\\infty } \\\\frac{r_n(x)}{\\\\varphi (n)}=\\\\beta \\\\Big \\\\}. \\\\end{aligned}$$</span></div></div><p>We prove that <span>\\\\(E_{\\\\alpha ,\\\\beta }^\\\\varphi \\\\)</span> has Hausdorff dimension one if <span>\\\\(\\\\lim _{n,p\\\\rightarrow \\\\infty }\\\\frac{\\\\varphi (n+p)-\\\\varphi (n)}{p}=0\\\\)</span> and that <span>\\\\(E_{0,\\\\infty }^\\\\varphi \\\\)</span> is residual in [0,1] when <span>\\\\(\\\\liminf _{n\\\\rightarrow {\\\\infty }}\\\\frac{\\\\varphi (n)}{n}=0\\\\)</span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-023-00294-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-023-00294-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A note on exceptional sets in Erdös–Rényi limit theorem
For \(x\in [0,1]\), the run-length function \(r_n(x)\) is defined as the length of longest run of 1’s among the first n dyadic digits in the dyadic expansion of x. We study the Hausdorff dimension of the exceptional set in Erdös–Rényi limit theorem. Let \(\varphi :{{\mathbb {N}}}\rightarrow (0,\infty )\) be a monotonically increasing function with \(\lim _{n\rightarrow \infty }\varphi (n)=\infty \) and \(0\le \alpha \le \beta \le \infty \), define
We prove that \(E_{\alpha ,\beta }^\varphi \) has Hausdorff dimension one if \(\lim _{n,p\rightarrow \infty }\frac{\varphi (n+p)-\varphi (n)}{p}=0\) and that \(E_{0,\infty }^\varphi \) is residual in [0,1] when \(\liminf _{n\rightarrow {\infty }}\frac{\varphi (n)}{n}=0\).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.