面对未知的数据分析

IF 7.4 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
E. Wagenmakers, A. Sarafoglou, B. Aczel
{"title":"面对未知的数据分析","authors":"E. Wagenmakers, A. Sarafoglou, B. Aczel","doi":"10.1177/09637214231168565","DOIUrl":null,"url":null,"abstract":"Empirical claims are inevitably associated with uncertainty, and a major goal of data analysis is therefore to quantify that uncertainty. Recent work has revealed that most uncertainty may lie not in what is usually reported (e.g., p value, confidence interval, or Bayes factor) but in what is left unreported (e.g., how the experiment was designed, whether the conclusion is robust under plausible alternative analysis protocols, and how credible the authors believe their hypothesis to be). This suggests that the rigorous evaluation of an empirical claim involves an assessment of the entire empirical cycle and that scientific progress benefits from radical transparency in planning, data management, inference, and reporting. We summarize recent methodological developments in this area and conclude that the focus on a single statistical analysis is myopic. Sound statistical analysis is important, but social scientists may gain more insight by taking a broad view on uncertainty and by working to reduce the “unknown unknowns” that still plague reporting practice.","PeriodicalId":10802,"journal":{"name":"Current Directions in Psychological Science","volume":"32 1","pages":"362 - 368"},"PeriodicalIF":7.4000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Facing the Unknown Unknowns of Data Analysis\",\"authors\":\"E. Wagenmakers, A. Sarafoglou, B. Aczel\",\"doi\":\"10.1177/09637214231168565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical claims are inevitably associated with uncertainty, and a major goal of data analysis is therefore to quantify that uncertainty. Recent work has revealed that most uncertainty may lie not in what is usually reported (e.g., p value, confidence interval, or Bayes factor) but in what is left unreported (e.g., how the experiment was designed, whether the conclusion is robust under plausible alternative analysis protocols, and how credible the authors believe their hypothesis to be). This suggests that the rigorous evaluation of an empirical claim involves an assessment of the entire empirical cycle and that scientific progress benefits from radical transparency in planning, data management, inference, and reporting. We summarize recent methodological developments in this area and conclude that the focus on a single statistical analysis is myopic. Sound statistical analysis is important, but social scientists may gain more insight by taking a broad view on uncertainty and by working to reduce the “unknown unknowns” that still plague reporting practice.\",\"PeriodicalId\":10802,\"journal\":{\"name\":\"Current Directions in Psychological Science\",\"volume\":\"32 1\",\"pages\":\"362 - 368\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/09637214231168565\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/09637214231168565","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

经验主张不可避免地与不确定性联系在一起,因此数据分析的一个主要目标是量化这种不确定性。最近的工作表明,大多数不确定性可能不在于通常报告的内容(例如,p值、置信区间或贝叶斯因子),而在于未报告的内容。这表明,对实证主张的严格评估涉及对整个实证周期的评估,科学进步得益于规划、数据管理、推理和报告的彻底透明。我们总结了这一领域最近的方法发展,并得出结论,对单一统计分析的关注是短视的。健全的统计分析很重要,但社会科学家可以通过对不确定性的广泛看法,并努力减少仍然困扰报告实践的“未知因素”,从而获得更多的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facing the Unknown Unknowns of Data Analysis
Empirical claims are inevitably associated with uncertainty, and a major goal of data analysis is therefore to quantify that uncertainty. Recent work has revealed that most uncertainty may lie not in what is usually reported (e.g., p value, confidence interval, or Bayes factor) but in what is left unreported (e.g., how the experiment was designed, whether the conclusion is robust under plausible alternative analysis protocols, and how credible the authors believe their hypothesis to be). This suggests that the rigorous evaluation of an empirical claim involves an assessment of the entire empirical cycle and that scientific progress benefits from radical transparency in planning, data management, inference, and reporting. We summarize recent methodological developments in this area and conclude that the focus on a single statistical analysis is myopic. Sound statistical analysis is important, but social scientists may gain more insight by taking a broad view on uncertainty and by working to reduce the “unknown unknowns” that still plague reporting practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Directions in Psychological Science
Current Directions in Psychological Science PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.00
自引率
1.40%
发文量
61
期刊介绍: Current Directions in Psychological Science publishes reviews by leading experts covering all of scientific psychology and its applications. Each issue of Current Directions features a diverse mix of reports on various topics such as language, memory and cognition, development, the neural basis of behavior and emotions, various aspects of psychopathology, and theory of mind. These articles allow readers to stay apprised of important developments across subfields beyond their areas of expertise and bodies of research they might not otherwise be aware of. The articles in Current Directions are also written to be accessible to non-experts, making them ideally suited for use in the classroom as teaching supplements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信