{"title":"基于农场操作识别的越野插电式混合动力拖拉机智能能量管理策略","authors":"Amin Ghobadpour, Hossein Mousazadeh, Sousso Kelouwani, Nadjet Zioui, Mohsen Kandidayeni, Loïc Boulon","doi":"10.1049/els2.12029","DOIUrl":null,"url":null,"abstract":"<p>Due to the growing emergence of vehicle electrification, agricultural tractor developers are launching hybrid powertrains in which energy management strategy (EMS) assumes a prominent role. This work mainly aims at developing an EMS for a plug-in hybrid electric tractor (PHET) to minimise fuel consumption and increase the operating range. The developed off-road PHET power sources are composed of a biogas-fuelled Internal Combustion Engine Generator (Bio-Gen), a photovoltaic system, and a battery pack. To control the power flow among different sources, a two-layer EMS is formulated. In this regard, initially, the farm operating mode is recognised by means of classification of a working cycle's features. Then, a control strategy based on a multi-mode fuzzy logic controller (MFLC) is employed to manage the power flow. At each sequence, the classifier identifies the farm operation condition and accordingly activates the relative mode of the MFLC to meet the requested power from the Bio-Gen. The performance of the proposed EMS has been evaluated based on three real-world typical agricultural working cycles. The results demonstrate the successful performance of the proposed intelligent EMS under farm conditions by maintaining the energy sources' operation in a high-efficiency zone which can lead to the extension of the working range and decrease fuel consumption.</p>","PeriodicalId":48518,"journal":{"name":"IET Electrical Systems in Transportation","volume":"11 4","pages":"333-347"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12029","citationCount":"11","resultStr":"{\"title\":\"An intelligent energy management strategy for an off-road plug-in hybrid electric tractor based on farm operation recognition\",\"authors\":\"Amin Ghobadpour, Hossein Mousazadeh, Sousso Kelouwani, Nadjet Zioui, Mohsen Kandidayeni, Loïc Boulon\",\"doi\":\"10.1049/els2.12029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the growing emergence of vehicle electrification, agricultural tractor developers are launching hybrid powertrains in which energy management strategy (EMS) assumes a prominent role. This work mainly aims at developing an EMS for a plug-in hybrid electric tractor (PHET) to minimise fuel consumption and increase the operating range. The developed off-road PHET power sources are composed of a biogas-fuelled Internal Combustion Engine Generator (Bio-Gen), a photovoltaic system, and a battery pack. To control the power flow among different sources, a two-layer EMS is formulated. In this regard, initially, the farm operating mode is recognised by means of classification of a working cycle's features. Then, a control strategy based on a multi-mode fuzzy logic controller (MFLC) is employed to manage the power flow. At each sequence, the classifier identifies the farm operation condition and accordingly activates the relative mode of the MFLC to meet the requested power from the Bio-Gen. The performance of the proposed EMS has been evaluated based on three real-world typical agricultural working cycles. The results demonstrate the successful performance of the proposed intelligent EMS under farm conditions by maintaining the energy sources' operation in a high-efficiency zone which can lead to the extension of the working range and decrease fuel consumption.</p>\",\"PeriodicalId\":48518,\"journal\":{\"name\":\"IET Electrical Systems in Transportation\",\"volume\":\"11 4\",\"pages\":\"333-347\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/els2.12029\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Electrical Systems in Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/els2.12029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Electrical Systems in Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/els2.12029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An intelligent energy management strategy for an off-road plug-in hybrid electric tractor based on farm operation recognition
Due to the growing emergence of vehicle electrification, agricultural tractor developers are launching hybrid powertrains in which energy management strategy (EMS) assumes a prominent role. This work mainly aims at developing an EMS for a plug-in hybrid electric tractor (PHET) to minimise fuel consumption and increase the operating range. The developed off-road PHET power sources are composed of a biogas-fuelled Internal Combustion Engine Generator (Bio-Gen), a photovoltaic system, and a battery pack. To control the power flow among different sources, a two-layer EMS is formulated. In this regard, initially, the farm operating mode is recognised by means of classification of a working cycle's features. Then, a control strategy based on a multi-mode fuzzy logic controller (MFLC) is employed to manage the power flow. At each sequence, the classifier identifies the farm operation condition and accordingly activates the relative mode of the MFLC to meet the requested power from the Bio-Gen. The performance of the proposed EMS has been evaluated based on three real-world typical agricultural working cycles. The results demonstrate the successful performance of the proposed intelligent EMS under farm conditions by maintaining the energy sources' operation in a high-efficiency zone which can lead to the extension of the working range and decrease fuel consumption.