轴颈形状和位置误差对四槽毛细管节流混合径向轴承润滑性能影响的研究

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Lili Wang, Xue Ge, Jingdong Duan, Longchao Li, Yunlong Bao
{"title":"轴颈形状和位置误差对四槽毛细管节流混合径向轴承润滑性能影响的研究","authors":"Lili Wang,&nbsp;Xue Ge,&nbsp;Jingdong Duan,&nbsp;Longchao Li,&nbsp;Yunlong Bao","doi":"10.1002/ls.1641","DOIUrl":null,"url":null,"abstract":"<p>In the actual working condition, due to the manufacturing errors, improper installation, load, thermal deformation or other factors can cause the journal surface to produce the form and position errors. The mathematical models are developed that takes into account the form and position errors, the lubrication performance of four-recess capillary restrictor hybrid journal bearings with different journal tilt angles and cylindricities is studied, and the effect of eccentricity on the oil film lubrication performance is analysed. The results show that the dimensionless oil film pressure and loading capacity increase as the journal tilt angle and eccentricity increase considering journal tilt, and the friction coefficient tends to increase and then decrease. Compared with journal alignment, the oil film thickness distorts, the oil film pressure peak shifts to the edge of bearing, and the horizontal tilt has a greater impact on bearing when the journal is tilted. The oil film pressure distribution has no significant change considering cylindricity errors, while the oil film pressure value increases, the loading capacity increases and the coefficient of friction decreases as the cylindricity and eccentricity increase. The research shows that the presence of a certain cylindricity error contributes to the lubrication performance of four-recess capillary restrictor hybrid journal bearings.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on the influence of journal form and position errors on the lubrication performance of four-recess capillary restrictor hybrid journal bearing\",\"authors\":\"Lili Wang,&nbsp;Xue Ge,&nbsp;Jingdong Duan,&nbsp;Longchao Li,&nbsp;Yunlong Bao\",\"doi\":\"10.1002/ls.1641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the actual working condition, due to the manufacturing errors, improper installation, load, thermal deformation or other factors can cause the journal surface to produce the form and position errors. The mathematical models are developed that takes into account the form and position errors, the lubrication performance of four-recess capillary restrictor hybrid journal bearings with different journal tilt angles and cylindricities is studied, and the effect of eccentricity on the oil film lubrication performance is analysed. The results show that the dimensionless oil film pressure and loading capacity increase as the journal tilt angle and eccentricity increase considering journal tilt, and the friction coefficient tends to increase and then decrease. Compared with journal alignment, the oil film thickness distorts, the oil film pressure peak shifts to the edge of bearing, and the horizontal tilt has a greater impact on bearing when the journal is tilted. The oil film pressure distribution has no significant change considering cylindricity errors, while the oil film pressure value increases, the loading capacity increases and the coefficient of friction decreases as the cylindricity and eccentricity increase. The research shows that the presence of a certain cylindricity error contributes to the lubrication performance of four-recess capillary restrictor hybrid journal bearings.</p>\",\"PeriodicalId\":18114,\"journal\":{\"name\":\"Lubrication Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubrication Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ls.1641\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1641","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

在实际工作状态下,由于制造误差、安装不当、载荷、热变形或其他因素均可导致轴颈表面产生形状和位置误差。建立了考虑形状和位置误差的数学模型,研究了不同轴颈倾角和圆柱度的四凹槽毛细限流混合式滑动轴承的润滑性能,并分析了偏心对油膜润滑性能的影响。结果表明:考虑轴颈倾角,随着轴颈倾角和偏心距的增大,无量纲油膜压力和承载能力增大,摩擦系数呈先增大后减小的趋势;与轴颈对中相比,当轴颈倾斜时,油膜厚度扭曲,油膜压力峰值向轴承边缘移动,水平倾斜对轴承的影响更大。考虑圆柱度误差时,油膜压力分布无明显变化,随着圆柱度和偏心度的增大,油膜压力值增大,载荷能力增大,摩擦系数减小。研究表明,一定圆柱度误差的存在影响了四凹槽毛细限流混合式滑动轴承的润滑性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the influence of journal form and position errors on the lubrication performance of four-recess capillary restrictor hybrid journal bearing

In the actual working condition, due to the manufacturing errors, improper installation, load, thermal deformation or other factors can cause the journal surface to produce the form and position errors. The mathematical models are developed that takes into account the form and position errors, the lubrication performance of four-recess capillary restrictor hybrid journal bearings with different journal tilt angles and cylindricities is studied, and the effect of eccentricity on the oil film lubrication performance is analysed. The results show that the dimensionless oil film pressure and loading capacity increase as the journal tilt angle and eccentricity increase considering journal tilt, and the friction coefficient tends to increase and then decrease. Compared with journal alignment, the oil film thickness distorts, the oil film pressure peak shifts to the edge of bearing, and the horizontal tilt has a greater impact on bearing when the journal is tilted. The oil film pressure distribution has no significant change considering cylindricity errors, while the oil film pressure value increases, the loading capacity increases and the coefficient of friction decreases as the cylindricity and eccentricity increase. The research shows that the presence of a certain cylindricity error contributes to the lubrication performance of four-recess capillary restrictor hybrid journal bearings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubrication Science
Lubrication Science ENGINEERING, CHEMICAL-ENGINEERING, MECHANICAL
CiteScore
3.60
自引率
10.50%
发文量
61
审稿时长
6.8 months
期刊介绍: Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development. Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on: Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives. State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces. Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles. Gas lubrication. Extreme-conditions lubrication. Green-lubrication technology and lubricants. Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions. Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural. Modelling hydrodynamic and thin film lubrication. All lubrication related aspects of nanotribology. Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption. Bio-lubrication, bio-lubricants and lubricated biological systems. Other novel and cutting-edge aspects of lubrication in all lubrication regimes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信