Ragaventhiran J, V. P, M. Kodabagi, Syed Thouheed Ahmed, P. Ramadoss, Prisma Megantoro
{"title":"基于WINDOWS系统调用序列的无监督恶意软件检测系统","authors":"Ragaventhiran J, V. P, M. Kodabagi, Syed Thouheed Ahmed, P. Ramadoss, Prisma Megantoro","doi":"10.22452/mjcs.sp2022no2.7","DOIUrl":null,"url":null,"abstract":"Malware attacks have grown in prominence in recent years, posing severe security risks and resulting in significant financial losses. The ability to rapidly and reliably classify malware is vital to cybersecurity due to the exponential growth of malware variants. The role of artificial intelligence plays a significant role in cybersecurity industry. Recently, in the field of malware detection deep learning technique seeks more attention than the machine learning techniques due to the complexity of its behavior. Because the deep learning technique performs well than the machine learning techniques in terms of accuracy and it is well suited for large amount of data. The input attribute for the proposed model is windows-based system call sequence which is collected from NT mal detect project. In this work, the unsupervised deep learning technique used for text classification namely LSTM autoencoder and the performance of proposed model compares with existing DL methods such as CNN, RNN and LSTM with the performance parameters of accuracy, precision, recall and F1-measure.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AN UNSUPERVISED MALWARE DETECTION SYSTEM FOR WINDOWS BASED SYSTEM CALL SEQUENCES\",\"authors\":\"Ragaventhiran J, V. P, M. Kodabagi, Syed Thouheed Ahmed, P. Ramadoss, Prisma Megantoro\",\"doi\":\"10.22452/mjcs.sp2022no2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware attacks have grown in prominence in recent years, posing severe security risks and resulting in significant financial losses. The ability to rapidly and reliably classify malware is vital to cybersecurity due to the exponential growth of malware variants. The role of artificial intelligence plays a significant role in cybersecurity industry. Recently, in the field of malware detection deep learning technique seeks more attention than the machine learning techniques due to the complexity of its behavior. Because the deep learning technique performs well than the machine learning techniques in terms of accuracy and it is well suited for large amount of data. The input attribute for the proposed model is windows-based system call sequence which is collected from NT mal detect project. In this work, the unsupervised deep learning technique used for text classification namely LSTM autoencoder and the performance of proposed model compares with existing DL methods such as CNN, RNN and LSTM with the performance parameters of accuracy, precision, recall and F1-measure.\",\"PeriodicalId\":49894,\"journal\":{\"name\":\"Malaysian Journal of Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.22452/mjcs.sp2022no2.7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.sp2022no2.7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
AN UNSUPERVISED MALWARE DETECTION SYSTEM FOR WINDOWS BASED SYSTEM CALL SEQUENCES
Malware attacks have grown in prominence in recent years, posing severe security risks and resulting in significant financial losses. The ability to rapidly and reliably classify malware is vital to cybersecurity due to the exponential growth of malware variants. The role of artificial intelligence plays a significant role in cybersecurity industry. Recently, in the field of malware detection deep learning technique seeks more attention than the machine learning techniques due to the complexity of its behavior. Because the deep learning technique performs well than the machine learning techniques in terms of accuracy and it is well suited for large amount of data. The input attribute for the proposed model is windows-based system call sequence which is collected from NT mal detect project. In this work, the unsupervised deep learning technique used for text classification namely LSTM autoencoder and the performance of proposed model compares with existing DL methods such as CNN, RNN and LSTM with the performance parameters of accuracy, precision, recall and F1-measure.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus