Ankit Kumar, Priya Saxena, Abdul Atiq Siddiqui, Sreekanth Bojjagani, Altaf Husain Khan, Ganesh Chandra Kisku
{"title":"封锁(COVID-19)和解锁期对印度勒克瑙市环境空气质量和人体健康的影响","authors":"Ankit Kumar, Priya Saxena, Abdul Atiq Siddiqui, Sreekanth Bojjagani, Altaf Husain Khan, Ganesh Chandra Kisku","doi":"10.1007/s10874-023-09451-w","DOIUrl":null,"url":null,"abstract":"<div><p>Lucknow is one of the most polluted metro-city in India with increasing vehicular density and fuel consumption in the last three decades. The study was conducted during years 2019–2021 for measurement of fine particulate matter (PM<sub>2.5</sub>), nitrogen dioxide (NO<sub>2</sub>), sulphur dioxide (SO<sub>2</sub>), respirable particulate matter (PM<sub>10</sub>), and noise levels at nine selected sites; 4 residential, 4 commercial, and 1 industrial, encompassing prior-to-lockdown, during-lockdown, and after-lockdown periods. Values of PM<sub>10</sub> for prior-to-lockdown, during-lockdown, and after-lockdown period ranged from 133.2 to 197.4, 77.0 to 135.0, and 91.4 to 148.0 µg/m<sup>3</sup>, respectively while values of PM<sub>2.5</sub> were 66.5 to 93.6, 41.9 to 67.5 and 49.5 to 98.6 µg/m<sup>3</sup>, respectively. Corresponding values of SO<sub>2</sub> ranged from 8.7 to 12.8, 5.5 to 7.6, and 11.4 to 17.6 µg/m<sup>3</sup>, respectively while values of NO<sub>2</sub> were 24.6 to 57.0, 20.5 to 32.8, and 26.1 to 43.8 µg/m<sup>3</sup>, respectively. Order of the trace metals associated with PM<sub>2.5</sub> is Co < Cd < As < Cr < Ni < Cu < Pb < Mn < K < Zn, Co < Cd < As < Cr < Cu < Ni < Pb < Mn < Zn < K and Cd < Co < As < Cr < Cu < Ni < Pb < Mn < K < Zn in the same periods. Statistical data evidenced that the air quality of the city witnessed drastic improvement during the COVID-19 pandemic. WHO AIRQ + was utilized to calculate attributable health risk and post-neonatal disease burden; showing 1447 ± 768 estimated number of cases attributable to ambient PM<sub>10</sub> per lakh of population. Regulatory authorities need to establish new benchmarks for the prevention and management of public health risks for urban resilience and environmental management for episodic events in the near future.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"80 4","pages":"271 - 289"},"PeriodicalIF":3.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of lockdown (COVID-19) and unlocking period on ambient air quality and human health in Lucknow city, India\",\"authors\":\"Ankit Kumar, Priya Saxena, Abdul Atiq Siddiqui, Sreekanth Bojjagani, Altaf Husain Khan, Ganesh Chandra Kisku\",\"doi\":\"10.1007/s10874-023-09451-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lucknow is one of the most polluted metro-city in India with increasing vehicular density and fuel consumption in the last three decades. The study was conducted during years 2019–2021 for measurement of fine particulate matter (PM<sub>2.5</sub>), nitrogen dioxide (NO<sub>2</sub>), sulphur dioxide (SO<sub>2</sub>), respirable particulate matter (PM<sub>10</sub>), and noise levels at nine selected sites; 4 residential, 4 commercial, and 1 industrial, encompassing prior-to-lockdown, during-lockdown, and after-lockdown periods. Values of PM<sub>10</sub> for prior-to-lockdown, during-lockdown, and after-lockdown period ranged from 133.2 to 197.4, 77.0 to 135.0, and 91.4 to 148.0 µg/m<sup>3</sup>, respectively while values of PM<sub>2.5</sub> were 66.5 to 93.6, 41.9 to 67.5 and 49.5 to 98.6 µg/m<sup>3</sup>, respectively. Corresponding values of SO<sub>2</sub> ranged from 8.7 to 12.8, 5.5 to 7.6, and 11.4 to 17.6 µg/m<sup>3</sup>, respectively while values of NO<sub>2</sub> were 24.6 to 57.0, 20.5 to 32.8, and 26.1 to 43.8 µg/m<sup>3</sup>, respectively. Order of the trace metals associated with PM<sub>2.5</sub> is Co < Cd < As < Cr < Ni < Cu < Pb < Mn < K < Zn, Co < Cd < As < Cr < Cu < Ni < Pb < Mn < Zn < K and Cd < Co < As < Cr < Cu < Ni < Pb < Mn < K < Zn in the same periods. Statistical data evidenced that the air quality of the city witnessed drastic improvement during the COVID-19 pandemic. WHO AIRQ + was utilized to calculate attributable health risk and post-neonatal disease burden; showing 1447 ± 768 estimated number of cases attributable to ambient PM<sub>10</sub> per lakh of population. Regulatory authorities need to establish new benchmarks for the prevention and management of public health risks for urban resilience and environmental management for episodic events in the near future.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"80 4\",\"pages\":\"271 - 289\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-023-09451-w\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-023-09451-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Impact of lockdown (COVID-19) and unlocking period on ambient air quality and human health in Lucknow city, India
Lucknow is one of the most polluted metro-city in India with increasing vehicular density and fuel consumption in the last three decades. The study was conducted during years 2019–2021 for measurement of fine particulate matter (PM2.5), nitrogen dioxide (NO2), sulphur dioxide (SO2), respirable particulate matter (PM10), and noise levels at nine selected sites; 4 residential, 4 commercial, and 1 industrial, encompassing prior-to-lockdown, during-lockdown, and after-lockdown periods. Values of PM10 for prior-to-lockdown, during-lockdown, and after-lockdown period ranged from 133.2 to 197.4, 77.0 to 135.0, and 91.4 to 148.0 µg/m3, respectively while values of PM2.5 were 66.5 to 93.6, 41.9 to 67.5 and 49.5 to 98.6 µg/m3, respectively. Corresponding values of SO2 ranged from 8.7 to 12.8, 5.5 to 7.6, and 11.4 to 17.6 µg/m3, respectively while values of NO2 were 24.6 to 57.0, 20.5 to 32.8, and 26.1 to 43.8 µg/m3, respectively. Order of the trace metals associated with PM2.5 is Co < Cd < As < Cr < Ni < Cu < Pb < Mn < K < Zn, Co < Cd < As < Cr < Cu < Ni < Pb < Mn < Zn < K and Cd < Co < As < Cr < Cu < Ni < Pb < Mn < K < Zn in the same periods. Statistical data evidenced that the air quality of the city witnessed drastic improvement during the COVID-19 pandemic. WHO AIRQ + was utilized to calculate attributable health risk and post-neonatal disease burden; showing 1447 ± 768 estimated number of cases attributable to ambient PM10 per lakh of population. Regulatory authorities need to establish new benchmarks for the prevention and management of public health risks for urban resilience and environmental management for episodic events in the near future.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.