{"title":"基于GPS的车辆移动功率模型的验证","authors":"G. Bozdech, P. Ayers, D. Irick","doi":"10.1504/ijvp.2019.10025784","DOIUrl":null,"url":null,"abstract":"Recently, military vehicles have been equipped with hybrid, diesel-electric drives to improve fuel efficiency and stealth capabilities, and these vehicles require accurate power duty cycle estimates. A GPS-based mobility power and duty cycle model was developed and is used to predict the vehicle power requirements. The dynamic vehicle parameters needed to estimate the forces and power developed during locomotion are determined from the global positioning system (GPS) tracking data. Controlled tests were performed and the predicted mobility power values predicted from a GPS receiver were compared to the measured drivewheel power estimated from engine data transmitted on the vehicle's controller area network (CAN). The results from the validation tests indicated that the model was reasonably accurate in predicting the average power requirements of the vehicle.","PeriodicalId":52169,"journal":{"name":"International Journal of Vehicle Performance","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a GPS-based vehicle mobility power model\",\"authors\":\"G. Bozdech, P. Ayers, D. Irick\",\"doi\":\"10.1504/ijvp.2019.10025784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, military vehicles have been equipped with hybrid, diesel-electric drives to improve fuel efficiency and stealth capabilities, and these vehicles require accurate power duty cycle estimates. A GPS-based mobility power and duty cycle model was developed and is used to predict the vehicle power requirements. The dynamic vehicle parameters needed to estimate the forces and power developed during locomotion are determined from the global positioning system (GPS) tracking data. Controlled tests were performed and the predicted mobility power values predicted from a GPS receiver were compared to the measured drivewheel power estimated from engine data transmitted on the vehicle's controller area network (CAN). The results from the validation tests indicated that the model was reasonably accurate in predicting the average power requirements of the vehicle.\",\"PeriodicalId\":52169,\"journal\":{\"name\":\"International Journal of Vehicle Performance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvp.2019.10025784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvp.2019.10025784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Validation of a GPS-based vehicle mobility power model
Recently, military vehicles have been equipped with hybrid, diesel-electric drives to improve fuel efficiency and stealth capabilities, and these vehicles require accurate power duty cycle estimates. A GPS-based mobility power and duty cycle model was developed and is used to predict the vehicle power requirements. The dynamic vehicle parameters needed to estimate the forces and power developed during locomotion are determined from the global positioning system (GPS) tracking data. Controlled tests were performed and the predicted mobility power values predicted from a GPS receiver were compared to the measured drivewheel power estimated from engine data transmitted on the vehicle's controller area network (CAN). The results from the validation tests indicated that the model was reasonably accurate in predicting the average power requirements of the vehicle.