伯努利地图量词的借鉴:脑电图情感识别的创新方法

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-06-01 Epub Date: 2023-04-23 DOI:10.1007/s11571-023-09968-6
Atefeh Goshvarpour, Ateke Goshvarpour
{"title":"伯努利地图量词的借鉴:脑电图情感识别的创新方法","authors":"Atefeh Goshvarpour, Ateke Goshvarpour","doi":"10.1007/s11571-023-09968-6","DOIUrl":null,"url":null,"abstract":"<p><p>Thanks to the advent of affective computing, designing an automatic human emotion recognition system for clinical and non-clinical applications has attracted the attention of many researchers. Currently, multi-channel electroencephalogram (EEG)-based emotion recognition is a fundamental but challenging issue. This experiment envisioned developing a new scheme for automated EEG affect recognition. An innovative nonlinear feature engineering approach was presented based on Lemniscate of Bernoulli's Map (LBM), which belongs to the family of chaotic maps, in line with the EEG's nonlinear nature. As far as the authors know, LBM has not been utilized for biological signal analysis. Next, the map was characterized using several graphical indices. The feature vector was imposed on the feature selection algorithm while evaluating the role of the feature vector dimension on emotion recognition rates. Finally, the efficiency of the features on emotion recognition was appraised using two conventional classifiers and validated using the Database for Emotion Analysis using Physiological signals (DEAP) and SJTU Emotion EEG Dataset-IV (SEED-IV) benchmark databases. The experimental results showed a maximum accuracy of 92.16% for DEAP and 90.7% for SEED-IV. Achieving higher recognition rates compared to the state-of-art EEG emotion recognition systems suggest the proposed method based on LBM could have potential both in characterizing bio-signal dynamics and detecting affect-deficit disorders.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"1061-1077"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143135/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lemniscate of Bernoulli's map quantifiers: innovative measures for EEG emotion recognition.\",\"authors\":\"Atefeh Goshvarpour, Ateke Goshvarpour\",\"doi\":\"10.1007/s11571-023-09968-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thanks to the advent of affective computing, designing an automatic human emotion recognition system for clinical and non-clinical applications has attracted the attention of many researchers. Currently, multi-channel electroencephalogram (EEG)-based emotion recognition is a fundamental but challenging issue. This experiment envisioned developing a new scheme for automated EEG affect recognition. An innovative nonlinear feature engineering approach was presented based on Lemniscate of Bernoulli's Map (LBM), which belongs to the family of chaotic maps, in line with the EEG's nonlinear nature. As far as the authors know, LBM has not been utilized for biological signal analysis. Next, the map was characterized using several graphical indices. The feature vector was imposed on the feature selection algorithm while evaluating the role of the feature vector dimension on emotion recognition rates. Finally, the efficiency of the features on emotion recognition was appraised using two conventional classifiers and validated using the Database for Emotion Analysis using Physiological signals (DEAP) and SJTU Emotion EEG Dataset-IV (SEED-IV) benchmark databases. The experimental results showed a maximum accuracy of 92.16% for DEAP and 90.7% for SEED-IV. Achieving higher recognition rates compared to the state-of-art EEG emotion recognition systems suggest the proposed method based on LBM could have potential both in characterizing bio-signal dynamics and detecting affect-deficit disorders.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\" \",\"pages\":\"1061-1077\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143135/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09968-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11571-023-09968-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于情感计算的出现,为临床和非临床应用设计自动人类情感识别系统吸引了许多研究人员的关注。目前,基于多通道脑电图(EEG)的情感识别是一个基本但具有挑战性的问题。本实验设想开发一种新的脑电图情感自动识别方案。根据 EEG 的非线性特性,提出了一种基于伯努利图(LBM)的创新非线性特征工程方法,该方法属于混沌图系列。据作者所知,LBM 还未被用于生物信号分析。接下来,使用几个图形指数对图进行特征描述。在评估特征向量维度对情绪识别率的作用时,对特征选择算法施加了特征向量。最后,使用两个传统分类器评估了特征对情感识别的效率,并使用生理信号情感分析数据库(DEAP)和上海交通大学情感脑电图数据集-IV(SEED-IV)基准数据库进行了验证。实验结果表明,DEAP 和 SEED-IV 的最高准确率分别为 92.16% 和 90.7%。与最先进的脑电图情感识别系统相比,该方法的识别率更高,这表明基于 LBM 的方法在描述生物信号动态和检测情感缺失障碍方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lemniscate of Bernoulli's map quantifiers: innovative measures for EEG emotion recognition.

Thanks to the advent of affective computing, designing an automatic human emotion recognition system for clinical and non-clinical applications has attracted the attention of many researchers. Currently, multi-channel electroencephalogram (EEG)-based emotion recognition is a fundamental but challenging issue. This experiment envisioned developing a new scheme for automated EEG affect recognition. An innovative nonlinear feature engineering approach was presented based on Lemniscate of Bernoulli's Map (LBM), which belongs to the family of chaotic maps, in line with the EEG's nonlinear nature. As far as the authors know, LBM has not been utilized for biological signal analysis. Next, the map was characterized using several graphical indices. The feature vector was imposed on the feature selection algorithm while evaluating the role of the feature vector dimension on emotion recognition rates. Finally, the efficiency of the features on emotion recognition was appraised using two conventional classifiers and validated using the Database for Emotion Analysis using Physiological signals (DEAP) and SJTU Emotion EEG Dataset-IV (SEED-IV) benchmark databases. The experimental results showed a maximum accuracy of 92.16% for DEAP and 90.7% for SEED-IV. Achieving higher recognition rates compared to the state-of-art EEG emotion recognition systems suggest the proposed method based on LBM could have potential both in characterizing bio-signal dynamics and detecting affect-deficit disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信