{"title":"伯努利地图量词的借鉴:脑电图情感识别的创新方法","authors":"Atefeh Goshvarpour, Ateke Goshvarpour","doi":"10.1007/s11571-023-09968-6","DOIUrl":null,"url":null,"abstract":"<p><p>Thanks to the advent of affective computing, designing an automatic human emotion recognition system for clinical and non-clinical applications has attracted the attention of many researchers. Currently, multi-channel electroencephalogram (EEG)-based emotion recognition is a fundamental but challenging issue. This experiment envisioned developing a new scheme for automated EEG affect recognition. An innovative nonlinear feature engineering approach was presented based on Lemniscate of Bernoulli's Map (LBM), which belongs to the family of chaotic maps, in line with the EEG's nonlinear nature. As far as the authors know, LBM has not been utilized for biological signal analysis. Next, the map was characterized using several graphical indices. The feature vector was imposed on the feature selection algorithm while evaluating the role of the feature vector dimension on emotion recognition rates. Finally, the efficiency of the features on emotion recognition was appraised using two conventional classifiers and validated using the Database for Emotion Analysis using Physiological signals (DEAP) and SJTU Emotion EEG Dataset-IV (SEED-IV) benchmark databases. The experimental results showed a maximum accuracy of 92.16% for DEAP and 90.7% for SEED-IV. Achieving higher recognition rates compared to the state-of-art EEG emotion recognition systems suggest the proposed method based on LBM could have potential both in characterizing bio-signal dynamics and detecting affect-deficit disorders.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"1061-1077"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143135/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lemniscate of Bernoulli's map quantifiers: innovative measures for EEG emotion recognition.\",\"authors\":\"Atefeh Goshvarpour, Ateke Goshvarpour\",\"doi\":\"10.1007/s11571-023-09968-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thanks to the advent of affective computing, designing an automatic human emotion recognition system for clinical and non-clinical applications has attracted the attention of many researchers. Currently, multi-channel electroencephalogram (EEG)-based emotion recognition is a fundamental but challenging issue. This experiment envisioned developing a new scheme for automated EEG affect recognition. An innovative nonlinear feature engineering approach was presented based on Lemniscate of Bernoulli's Map (LBM), which belongs to the family of chaotic maps, in line with the EEG's nonlinear nature. As far as the authors know, LBM has not been utilized for biological signal analysis. Next, the map was characterized using several graphical indices. The feature vector was imposed on the feature selection algorithm while evaluating the role of the feature vector dimension on emotion recognition rates. Finally, the efficiency of the features on emotion recognition was appraised using two conventional classifiers and validated using the Database for Emotion Analysis using Physiological signals (DEAP) and SJTU Emotion EEG Dataset-IV (SEED-IV) benchmark databases. The experimental results showed a maximum accuracy of 92.16% for DEAP and 90.7% for SEED-IV. Achieving higher recognition rates compared to the state-of-art EEG emotion recognition systems suggest the proposed method based on LBM could have potential both in characterizing bio-signal dynamics and detecting affect-deficit disorders.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\" \",\"pages\":\"1061-1077\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143135/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-09968-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11571-023-09968-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Lemniscate of Bernoulli's map quantifiers: innovative measures for EEG emotion recognition.
Thanks to the advent of affective computing, designing an automatic human emotion recognition system for clinical and non-clinical applications has attracted the attention of many researchers. Currently, multi-channel electroencephalogram (EEG)-based emotion recognition is a fundamental but challenging issue. This experiment envisioned developing a new scheme for automated EEG affect recognition. An innovative nonlinear feature engineering approach was presented based on Lemniscate of Bernoulli's Map (LBM), which belongs to the family of chaotic maps, in line with the EEG's nonlinear nature. As far as the authors know, LBM has not been utilized for biological signal analysis. Next, the map was characterized using several graphical indices. The feature vector was imposed on the feature selection algorithm while evaluating the role of the feature vector dimension on emotion recognition rates. Finally, the efficiency of the features on emotion recognition was appraised using two conventional classifiers and validated using the Database for Emotion Analysis using Physiological signals (DEAP) and SJTU Emotion EEG Dataset-IV (SEED-IV) benchmark databases. The experimental results showed a maximum accuracy of 92.16% for DEAP and 90.7% for SEED-IV. Achieving higher recognition rates compared to the state-of-art EEG emotion recognition systems suggest the proposed method based on LBM could have potential both in characterizing bio-signal dynamics and detecting affect-deficit disorders.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico