铈矿晶体的析出及其对简化核玻璃熔体流变学的影响

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Jeanini Jiusti, Elise Regnier, Norma Maria Machado, Mohamed Leith Ghazzai, Vincent Malivert, Muriel Neyret, François Faure
{"title":"铈矿晶体的析出及其对简化核玻璃熔体流变学的影响","authors":"Jeanini Jiusti,&nbsp;Elise Regnier,&nbsp;Norma Maria Machado,&nbsp;Mohamed Leith Ghazzai,&nbsp;Vincent Malivert,&nbsp;Muriel Neyret,&nbsp;François Faure","doi":"10.1111/ijag.16639","DOIUrl":null,"url":null,"abstract":"<p>In France, high-activity level wastes resulting from nuclear fission are conditioned in a homogeneous sodium-aluminoborosilicate glass by high-temperature vitrification. The tolerance of even a small fraction of crystals could enable an increase in the waste loadings, in addition to promoting process flexibility. If the waste loading were to be increased in French nuclear glass, cerianite (CeO<sub>2</sub>) crystals could precipitate. In this study, we investigated the cerianite crystallization in a simplified nuclear glass melt at different temperatures, Ce<sub>2</sub>O<sub>3</sub> wt%, and shear conditions. Furthermore, the evolution of the viscosity along with cerianite precipitation was followed. It was found that Ce<sub>2</sub>O<sub>3</sub> is highly soluble in the glass melt, as even for a Ce<sub>2</sub>O<sub>3</sub> wt% as high as 10% wt, the cerianite fraction in dynamic conditions at 1100°C after 8 h of crystallization was less than 1% vol. In addition, shear strongly accelerates cerianite crystallization and a high Ce<sub>2</sub>O<sub>3</sub> content can engender the precipitation of highly branched dendrites. The evolution of the cerianite fraction did not significantly affect the viscosity of the glass melt. Finally, unlike what has been observed in the well-known platinum group metal (PGM)-bearing melts, a glass melt containing .8 vol% of cerianite crystals remains Newtonian.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precipitation of cerianite crystals and its effect on the rheology of a simplified nuclear glass melt\",\"authors\":\"Jeanini Jiusti,&nbsp;Elise Regnier,&nbsp;Norma Maria Machado,&nbsp;Mohamed Leith Ghazzai,&nbsp;Vincent Malivert,&nbsp;Muriel Neyret,&nbsp;François Faure\",\"doi\":\"10.1111/ijag.16639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In France, high-activity level wastes resulting from nuclear fission are conditioned in a homogeneous sodium-aluminoborosilicate glass by high-temperature vitrification. The tolerance of even a small fraction of crystals could enable an increase in the waste loadings, in addition to promoting process flexibility. If the waste loading were to be increased in French nuclear glass, cerianite (CeO<sub>2</sub>) crystals could precipitate. In this study, we investigated the cerianite crystallization in a simplified nuclear glass melt at different temperatures, Ce<sub>2</sub>O<sub>3</sub> wt%, and shear conditions. Furthermore, the evolution of the viscosity along with cerianite precipitation was followed. It was found that Ce<sub>2</sub>O<sub>3</sub> is highly soluble in the glass melt, as even for a Ce<sub>2</sub>O<sub>3</sub> wt% as high as 10% wt, the cerianite fraction in dynamic conditions at 1100°C after 8 h of crystallization was less than 1% vol. In addition, shear strongly accelerates cerianite crystallization and a high Ce<sub>2</sub>O<sub>3</sub> content can engender the precipitation of highly branched dendrites. The evolution of the cerianite fraction did not significantly affect the viscosity of the glass melt. Finally, unlike what has been observed in the well-known platinum group metal (PGM)-bearing melts, a glass melt containing .8 vol% of cerianite crystals remains Newtonian.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16639\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16639","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

在法国,核裂变产生的高活度废物通过高温玻璃化处理置于均匀的钠铝硼硅酸盐玻璃中。除了提高工艺灵活性外,即使是一小部分晶体的容忍度也可以增加废物负荷。如果法国核玻璃中的废料负荷增加,就会析出铈(CeO2)晶体。在本研究中,我们研究了在不同温度、Ce2O3 wt%和剪切条件下,简化核玻璃熔体中铈矿的结晶。研究了黏度随铈矿沉淀的变化规律。结果表明,Ce2O3在玻璃熔体中具有较高的可溶性,即使Ce2O3 wt%高达10% wt,在1100℃的动态条件下,经过8 h的铈矿结晶后,铈矿分数仍小于1%。此外,剪切作用强烈地促进了铈矿的结晶,高Ce2O3含量可导致高支晶的析出。铈矿组分的演化对玻璃熔体的粘度没有显著影响。最后,与已知的含铂族金属(PGM)的熔体不同,含有0.8%铈矿晶体的玻璃熔体仍然是牛顿态的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Precipitation of cerianite crystals and its effect on the rheology of a simplified nuclear glass melt

In France, high-activity level wastes resulting from nuclear fission are conditioned in a homogeneous sodium-aluminoborosilicate glass by high-temperature vitrification. The tolerance of even a small fraction of crystals could enable an increase in the waste loadings, in addition to promoting process flexibility. If the waste loading were to be increased in French nuclear glass, cerianite (CeO2) crystals could precipitate. In this study, we investigated the cerianite crystallization in a simplified nuclear glass melt at different temperatures, Ce2O3 wt%, and shear conditions. Furthermore, the evolution of the viscosity along with cerianite precipitation was followed. It was found that Ce2O3 is highly soluble in the glass melt, as even for a Ce2O3 wt% as high as 10% wt, the cerianite fraction in dynamic conditions at 1100°C after 8 h of crystallization was less than 1% vol. In addition, shear strongly accelerates cerianite crystallization and a high Ce2O3 content can engender the precipitation of highly branched dendrites. The evolution of the cerianite fraction did not significantly affect the viscosity of the glass melt. Finally, unlike what has been observed in the well-known platinum group metal (PGM)-bearing melts, a glass melt containing .8 vol% of cerianite crystals remains Newtonian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信