{"title":"通过水力压裂和HTPF测试原位测量岩洞应力的挑战——案例研究:阿扎德水电站项目","authors":"M. Shahverdiloo, S. Zare","doi":"10.22044/JME.2021.10673.2037","DOIUrl":null,"url":null,"abstract":"Hydraulic fracturing (HF) and hydraulic testing of pre-existing fractures (HTPF) are efficient hydraulic methods in order to determine the in-situ stress of rock mass. Generally, the minimum (Sh) and maximum (SH) horizontal principal stresses are measured by hydraulic methods; the vertical stress (SV) is calculated by the weight of the overburden layers. In this work, 37 HF and HTPF tests are conducted in a meta-sandstone, which has about 10% inter-layer phyllite. The artesian circumstance, considerable gap between the drilling and hydraulic tests in the long borehole, no underground access tunnel to rock cavern at the early stages of projects, and a simplified hypothesis theory of HF are the main challenges and limitations of the HF/HTPF measurements. Due to the instability in the long borehole, the drill rig type and borehole length are revised; also TV logger is added to the process of selection of the test’s deep. The HF/HTPF data is sequentially analyzed by the classic and inversion methods in order to achieve an optimum number of hydraulic tests. Besides, The SH magnitude in the inversion method is lower than the classic method; the relevant geological data and the faulting plan analysis lead to validate the SH and Sh magnitudes and the azimuths obtained by the classic method. The measured SH and Sh magnitudes are 7-17 MPa and 4-11 MPa, respectively; the calculated vertical stress magnitude is 6-14 MPa at the test locations. Indeed, the stress state is (SH > SV > Sh), and SH azimuth range is 56-93 degrees.","PeriodicalId":45259,"journal":{"name":"Journal of Mining and Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Challenges for In-Situ Stress Measurement in Rock Caverns by Hydraulic Fracturing and HTPF Tests-Case Study: Azad Hydropower Project\",\"authors\":\"M. Shahverdiloo, S. Zare\",\"doi\":\"10.22044/JME.2021.10673.2037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydraulic fracturing (HF) and hydraulic testing of pre-existing fractures (HTPF) are efficient hydraulic methods in order to determine the in-situ stress of rock mass. Generally, the minimum (Sh) and maximum (SH) horizontal principal stresses are measured by hydraulic methods; the vertical stress (SV) is calculated by the weight of the overburden layers. In this work, 37 HF and HTPF tests are conducted in a meta-sandstone, which has about 10% inter-layer phyllite. The artesian circumstance, considerable gap between the drilling and hydraulic tests in the long borehole, no underground access tunnel to rock cavern at the early stages of projects, and a simplified hypothesis theory of HF are the main challenges and limitations of the HF/HTPF measurements. Due to the instability in the long borehole, the drill rig type and borehole length are revised; also TV logger is added to the process of selection of the test’s deep. The HF/HTPF data is sequentially analyzed by the classic and inversion methods in order to achieve an optimum number of hydraulic tests. Besides, The SH magnitude in the inversion method is lower than the classic method; the relevant geological data and the faulting plan analysis lead to validate the SH and Sh magnitudes and the azimuths obtained by the classic method. The measured SH and Sh magnitudes are 7-17 MPa and 4-11 MPa, respectively; the calculated vertical stress magnitude is 6-14 MPa at the test locations. Indeed, the stress state is (SH > SV > Sh), and SH azimuth range is 56-93 degrees.\",\"PeriodicalId\":45259,\"journal\":{\"name\":\"Journal of Mining and Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22044/JME.2021.10673.2037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MINING & MINERAL PROCESSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22044/JME.2021.10673.2037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
Challenges for In-Situ Stress Measurement in Rock Caverns by Hydraulic Fracturing and HTPF Tests-Case Study: Azad Hydropower Project
Hydraulic fracturing (HF) and hydraulic testing of pre-existing fractures (HTPF) are efficient hydraulic methods in order to determine the in-situ stress of rock mass. Generally, the minimum (Sh) and maximum (SH) horizontal principal stresses are measured by hydraulic methods; the vertical stress (SV) is calculated by the weight of the overburden layers. In this work, 37 HF and HTPF tests are conducted in a meta-sandstone, which has about 10% inter-layer phyllite. The artesian circumstance, considerable gap between the drilling and hydraulic tests in the long borehole, no underground access tunnel to rock cavern at the early stages of projects, and a simplified hypothesis theory of HF are the main challenges and limitations of the HF/HTPF measurements. Due to the instability in the long borehole, the drill rig type and borehole length are revised; also TV logger is added to the process of selection of the test’s deep. The HF/HTPF data is sequentially analyzed by the classic and inversion methods in order to achieve an optimum number of hydraulic tests. Besides, The SH magnitude in the inversion method is lower than the classic method; the relevant geological data and the faulting plan analysis lead to validate the SH and Sh magnitudes and the azimuths obtained by the classic method. The measured SH and Sh magnitudes are 7-17 MPa and 4-11 MPa, respectively; the calculated vertical stress magnitude is 6-14 MPa at the test locations. Indeed, the stress state is (SH > SV > Sh), and SH azimuth range is 56-93 degrees.