{"title":"四胞胎的多样结构景观","authors":"H. Lightfoot, T. Hagen, N. Tatum, Jonathan Hall","doi":"10.1002/1873-3468.13547","DOIUrl":null,"url":null,"abstract":"G‐quadruplexes are secondary structures formed in G‐rich sequences in DNA and RNA. Considerable research over the past three decades has led to in‐depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G‐quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson‐Crick‐based secondary structures, most G‐quadruplexes display highly redundant structural characteristics. However, numerous reports of G‐quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G‐quadruplex scaffolds. This review addresses G‐quadruplex formation and structure, including recent reports of non‐canonical G‐quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex‐RNA targeting as a therapeutic strategy.","PeriodicalId":50454,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/1873-3468.13547","citationCount":"82","resultStr":"{\"title\":\"The diverse structural landscape of quadruplexes\",\"authors\":\"H. Lightfoot, T. Hagen, N. Tatum, Jonathan Hall\",\"doi\":\"10.1002/1873-3468.13547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"G‐quadruplexes are secondary structures formed in G‐rich sequences in DNA and RNA. Considerable research over the past three decades has led to in‐depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G‐quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson‐Crick‐based secondary structures, most G‐quadruplexes display highly redundant structural characteristics. However, numerous reports of G‐quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G‐quadruplex scaffolds. This review addresses G‐quadruplex formation and structure, including recent reports of non‐canonical G‐quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex‐RNA targeting as a therapeutic strategy.\",\"PeriodicalId\":50454,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/1873-3468.13547\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.13547\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.13547","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
G‐quadruplexes are secondary structures formed in G‐rich sequences in DNA and RNA. Considerable research over the past three decades has led to in‐depth insight into these unusual structures in DNA. Since the more recent exploration into RNA G‐quadruplexes, such structures have demonstrated their in cellulo existence, function and roles in pathology. In comparison to Watson‐Crick‐based secondary structures, most G‐quadruplexes display highly redundant structural characteristics. However, numerous reports of G‐quadruplex motifs/structures with unique features (e.g. bulges, long loops, vacancy) have recently surfaced, expanding the repertoire of G‐quadruplex scaffolds. This review addresses G‐quadruplex formation and structure, including recent reports of non‐canonical G‐quadruplex structures. Improved methods of detection will likely further expand this collection of novel structures and ultimately change the face of quadruplex‐RNA targeting as a therapeutic strategy.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.