具有Neo-Hookean弹性矩阵的稀复合材料的固有模量和应变系数

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY
Dmytro Ivaneyko , Jan Domurath , Gert Heinrich , Marina Saphiannikova
{"title":"具有Neo-Hookean弹性矩阵的稀复合材料的固有模量和应变系数","authors":"Dmytro Ivaneyko ,&nbsp;Jan Domurath ,&nbsp;Gert Heinrich ,&nbsp;Marina Saphiannikova","doi":"10.1016/j.apples.2022.100100","DOIUrl":null,"url":null,"abstract":"<div><p>A finite element modelling of dilute elastomer composites based on a Neo-Hookean elastic matrix and rigid spherical particles embedded within the matrix was performed. In particular, the deformation field in vicinity of a sphere was simulated and numerical homogenization has been used to obtain the effective modulus of the composite <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> for different applied extension and compression ratios. At small deformations the well-known Smallwood result for the composite is reproduced: <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mrow><mo>[</mo><mi>μ</mi><mo>]</mo></mrow><mi>φ</mi><mo>)</mo></mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> with the intrinsic modulus <span><math><mrow><mrow><mo>[</mo><mi>μ</mi><mo>]</mo></mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>500</mn></mrow></math></span>. Here <span><math><mi>φ</mi></math></span> is the volume fraction of particles and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the modulus of the matrix solid. However at larger deformations higher values of the intrinsic modulus <span><math><mrow><mo>[</mo><mi>μ</mi><mo>]</mo></mrow></math></span> are obtained, which increase quadratically with the applied true strain. The homogenization procedure allowed to extract the intrinsic strain coefficients which are mirrored around the undeformed state for principle extension and compression axes. Utilizing the simulation results, stress and strain modifications of the Neo-Hookean strain energy function for dilute composites are proposed.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":"10 ","pages":"Article 100100"},"PeriodicalIF":2.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000176/pdfft?md5=60b88465649bf9460f333715bd2ad313&pid=1-s2.0-S2666496822000176-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Intrinsic modulus and strain coefficients in dilute composites with a Neo-Hookean elastic matrix\",\"authors\":\"Dmytro Ivaneyko ,&nbsp;Jan Domurath ,&nbsp;Gert Heinrich ,&nbsp;Marina Saphiannikova\",\"doi\":\"10.1016/j.apples.2022.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A finite element modelling of dilute elastomer composites based on a Neo-Hookean elastic matrix and rigid spherical particles embedded within the matrix was performed. In particular, the deformation field in vicinity of a sphere was simulated and numerical homogenization has been used to obtain the effective modulus of the composite <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub></math></span> for different applied extension and compression ratios. At small deformations the well-known Smallwood result for the composite is reproduced: <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mtext>eff</mtext></mrow></msub><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mrow><mo>[</mo><mi>μ</mi><mo>]</mo></mrow><mi>φ</mi><mo>)</mo></mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span> with the intrinsic modulus <span><math><mrow><mrow><mo>[</mo><mi>μ</mi><mo>]</mo></mrow><mo>=</mo><mn>2</mn><mo>.</mo><mn>500</mn></mrow></math></span>. Here <span><math><mi>φ</mi></math></span> is the volume fraction of particles and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the modulus of the matrix solid. However at larger deformations higher values of the intrinsic modulus <span><math><mrow><mo>[</mo><mi>μ</mi><mo>]</mo></mrow></math></span> are obtained, which increase quadratically with the applied true strain. The homogenization procedure allowed to extract the intrinsic strain coefficients which are mirrored around the undeformed state for principle extension and compression axes. Utilizing the simulation results, stress and strain modifications of the Neo-Hookean strain energy function for dilute composites are proposed.</p></div>\",\"PeriodicalId\":72251,\"journal\":{\"name\":\"Applications in engineering science\",\"volume\":\"10 \",\"pages\":\"Article 100100\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666496822000176/pdfft?md5=60b88465649bf9460f333715bd2ad313&pid=1-s2.0-S2666496822000176-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in engineering science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666496822000176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496822000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于Neo-Hookean弹性矩阵和嵌入在基体中的刚性球粒,建立了稀弹性体复合材料的有限元模型。特别对球面附近的变形场进行了模拟,并采用数值均匀化方法得到了不同拉伸比和压缩比下复合材料μeff的有效模量。在小变形时,复合材料的著名的Smallwood结果重现:μeff=(1+[μ]φ)μ0,固有模量[μ]=2.500。其中φ为颗粒的体积分数,μ0为基体固体的模量。然而,在较大的变形下,本征模量[μ]得到较高的值,其随施加的真应变呈二次增长。均质化程序允许提取本征应变系数,这些本征应变系数反映在主拉伸和压缩轴的未变形状态周围。利用模拟结果,提出了稀复合材料的Neo-Hookean应变能函数的应力应变修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsic modulus and strain coefficients in dilute composites with a Neo-Hookean elastic matrix

A finite element modelling of dilute elastomer composites based on a Neo-Hookean elastic matrix and rigid spherical particles embedded within the matrix was performed. In particular, the deformation field in vicinity of a sphere was simulated and numerical homogenization has been used to obtain the effective modulus of the composite μeff for different applied extension and compression ratios. At small deformations the well-known Smallwood result for the composite is reproduced: μeff=(1+[μ]φ)μ0 with the intrinsic modulus [μ]=2.500. Here φ is the volume fraction of particles and μ0 is the modulus of the matrix solid. However at larger deformations higher values of the intrinsic modulus [μ] are obtained, which increase quadratically with the applied true strain. The homogenization procedure allowed to extract the intrinsic strain coefficients which are mirrored around the undeformed state for principle extension and compression axes. Utilizing the simulation results, stress and strain modifications of the Neo-Hookean strain energy function for dilute composites are proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信