{"title":"真空暴露颗粒组件表面横向脉冲诱导惯性膨胀的模拟","authors":"Eric S. Frizzell, Christine M. Hartzell","doi":"10.1007/s10035-023-01363-6","DOIUrl":null,"url":null,"abstract":"<div><p>We demonstrate for the first time that a lateral impulse experienced by a granular channel can induce an inertial bulk dilation over long distances across a granular medium with a mechanically free surface. The surface dilation requires zero overburden pressure (exposure to vacuum) and is precipitated by the passing of waves traveling barely above the sound speed (> Mach 1.05). We simulate this phenomenon using open source Soft Sphere Discrete Element Method software. We prepare channels of monodisperse, cohesive spherical particles exposed to vacuum and modeled as Hertzian springs. We validate our model by recreating acoustic wave, strong shock, and shear dilation behavior. We then create shocks within the channel to determine the sensitivity of surface dilation to wave speed, wave type, initial packing fraction, and boundary effects. The shocks we create undergo a rapid decay in strength and appear to propagate as solitary waves that can be sustained across the channel. We find that an inertial surface dilation is induced by compressive solitary waves, is insensitive to channel length, decreases with bed height, and increases substantially with initial packing fraction. A hard subsurface floor is required to maintain this wave over the entire channel. Free surface dilation induced by laterally propagating impulse loading could be implicated in the formation of Lunar Cold Spots, distal regions of low thermal inertia surrounding young craters on the Moon.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of lateral impulse induced inertial dilation at the surface of a vacuum-exposed granular assembly\",\"authors\":\"Eric S. Frizzell, Christine M. Hartzell\",\"doi\":\"10.1007/s10035-023-01363-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We demonstrate for the first time that a lateral impulse experienced by a granular channel can induce an inertial bulk dilation over long distances across a granular medium with a mechanically free surface. The surface dilation requires zero overburden pressure (exposure to vacuum) and is precipitated by the passing of waves traveling barely above the sound speed (> Mach 1.05). We simulate this phenomenon using open source Soft Sphere Discrete Element Method software. We prepare channels of monodisperse, cohesive spherical particles exposed to vacuum and modeled as Hertzian springs. We validate our model by recreating acoustic wave, strong shock, and shear dilation behavior. We then create shocks within the channel to determine the sensitivity of surface dilation to wave speed, wave type, initial packing fraction, and boundary effects. The shocks we create undergo a rapid decay in strength and appear to propagate as solitary waves that can be sustained across the channel. We find that an inertial surface dilation is induced by compressive solitary waves, is insensitive to channel length, decreases with bed height, and increases substantially with initial packing fraction. A hard subsurface floor is required to maintain this wave over the entire channel. Free surface dilation induced by laterally propagating impulse loading could be implicated in the formation of Lunar Cold Spots, distal regions of low thermal inertia surrounding young craters on the Moon.</p></div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01363-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01363-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simulation of lateral impulse induced inertial dilation at the surface of a vacuum-exposed granular assembly
We demonstrate for the first time that a lateral impulse experienced by a granular channel can induce an inertial bulk dilation over long distances across a granular medium with a mechanically free surface. The surface dilation requires zero overburden pressure (exposure to vacuum) and is precipitated by the passing of waves traveling barely above the sound speed (> Mach 1.05). We simulate this phenomenon using open source Soft Sphere Discrete Element Method software. We prepare channels of monodisperse, cohesive spherical particles exposed to vacuum and modeled as Hertzian springs. We validate our model by recreating acoustic wave, strong shock, and shear dilation behavior. We then create shocks within the channel to determine the sensitivity of surface dilation to wave speed, wave type, initial packing fraction, and boundary effects. The shocks we create undergo a rapid decay in strength and appear to propagate as solitary waves that can be sustained across the channel. We find that an inertial surface dilation is induced by compressive solitary waves, is insensitive to channel length, decreases with bed height, and increases substantially with initial packing fraction. A hard subsurface floor is required to maintain this wave over the entire channel. Free surface dilation induced by laterally propagating impulse loading could be implicated in the formation of Lunar Cold Spots, distal regions of low thermal inertia surrounding young craters on the Moon.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.