Adib Bin Rashid , Nazmir-Nur Showva , Md Enamul Hoque
{"title":"明胶支架——再生治疗的直观支撑结构","authors":"Adib Bin Rashid , Nazmir-Nur Showva , Md Enamul Hoque","doi":"10.1016/j.cobme.2023.100452","DOIUrl":null,"url":null,"abstract":"<div><p>Advanced regenerative therapy aims to repair pathologically damaged tissue by cell transplantation in conjunction with supporting scaffolds. Gelatin-based scaffolds have attracted much attention in recent years due to their great bio-affinity that encourages the regeneration of tissues. Nowadays, by strengthening gelatin-based systems, cutting-edge methods like 3D bioprinting, freeze-drying, microfluidics and gelatin functionalization have shown excellent mimicry of natural tissue. The fabrication of porous gelatin-based scaffolds for wider tissue engineering applications including skin, cartilage, bone, liver, and cardiovascular is reviewed in this work. Additionally, the crosslinking procedures and the physicochemical characteristics of the gelatin-based scaffolds are also studied. Now, gelatin is considered one of the highest potential biomaterials for impending trends in which the gelatin-based scaffolds are used as a support structure for regenerative therapy.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Gelatin-based scaffolds: An intuitive support structure for regenerative therapy\",\"authors\":\"Adib Bin Rashid , Nazmir-Nur Showva , Md Enamul Hoque\",\"doi\":\"10.1016/j.cobme.2023.100452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Advanced regenerative therapy aims to repair pathologically damaged tissue by cell transplantation in conjunction with supporting scaffolds. Gelatin-based scaffolds have attracted much attention in recent years due to their great bio-affinity that encourages the regeneration of tissues. Nowadays, by strengthening gelatin-based systems, cutting-edge methods like 3D bioprinting, freeze-drying, microfluidics and gelatin functionalization have shown excellent mimicry of natural tissue. The fabrication of porous gelatin-based scaffolds for wider tissue engineering applications including skin, cartilage, bone, liver, and cardiovascular is reviewed in this work. Additionally, the crosslinking procedures and the physicochemical characteristics of the gelatin-based scaffolds are also studied. Now, gelatin is considered one of the highest potential biomaterials for impending trends in which the gelatin-based scaffolds are used as a support structure for regenerative therapy.</p></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451123000089\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451123000089","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Gelatin-based scaffolds: An intuitive support structure for regenerative therapy
Advanced regenerative therapy aims to repair pathologically damaged tissue by cell transplantation in conjunction with supporting scaffolds. Gelatin-based scaffolds have attracted much attention in recent years due to their great bio-affinity that encourages the regeneration of tissues. Nowadays, by strengthening gelatin-based systems, cutting-edge methods like 3D bioprinting, freeze-drying, microfluidics and gelatin functionalization have shown excellent mimicry of natural tissue. The fabrication of porous gelatin-based scaffolds for wider tissue engineering applications including skin, cartilage, bone, liver, and cardiovascular is reviewed in this work. Additionally, the crosslinking procedures and the physicochemical characteristics of the gelatin-based scaffolds are also studied. Now, gelatin is considered one of the highest potential biomaterials for impending trends in which the gelatin-based scaffolds are used as a support structure for regenerative therapy.