{"title":"具有五次齐次非线性的可逆全局中心","authors":"J. Llibre, C. Valls","doi":"10.1080/14689367.2023.2228737","DOIUrl":null,"url":null,"abstract":"A centre of a differential system in the plane is a singular point having a neighbourhood U such that is filled of periodic orbits. A global centre is a centre such that is filled of periodic orbits. To determine if a given differential system has a centre is in general a difficult problem, but it is even harder to know if it has a global centre. In the present paper we deal with the class of polynomial differential systems of the form (1) where P and Q are homogeneous polynomials of degree n. It is known that these systems can have global centres only if n is odd and the global centres in the cases n = 1 and n = 3 are known. Here we work with the case n = 5 and we classify the global centres of a four parameter family of systems (1). In particular we illustrate how to study the local phase portraits of the singular points whose linear part is identically zero using only vertical blow ups.","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"38 1","pages":"632 - 653"},"PeriodicalIF":0.5000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reversible global centres with quintic homogeneous nonlinearities\",\"authors\":\"J. Llibre, C. Valls\",\"doi\":\"10.1080/14689367.2023.2228737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centre of a differential system in the plane is a singular point having a neighbourhood U such that is filled of periodic orbits. A global centre is a centre such that is filled of periodic orbits. To determine if a given differential system has a centre is in general a difficult problem, but it is even harder to know if it has a global centre. In the present paper we deal with the class of polynomial differential systems of the form (1) where P and Q are homogeneous polynomials of degree n. It is known that these systems can have global centres only if n is odd and the global centres in the cases n = 1 and n = 3 are known. Here we work with the case n = 5 and we classify the global centres of a four parameter family of systems (1). In particular we illustrate how to study the local phase portraits of the singular points whose linear part is identically zero using only vertical blow ups.\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"38 1\",\"pages\":\"632 - 653\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2228737\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2228737","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Reversible global centres with quintic homogeneous nonlinearities
A centre of a differential system in the plane is a singular point having a neighbourhood U such that is filled of periodic orbits. A global centre is a centre such that is filled of periodic orbits. To determine if a given differential system has a centre is in general a difficult problem, but it is even harder to know if it has a global centre. In the present paper we deal with the class of polynomial differential systems of the form (1) where P and Q are homogeneous polynomials of degree n. It is known that these systems can have global centres only if n is odd and the global centres in the cases n = 1 and n = 3 are known. Here we work with the case n = 5 and we classify the global centres of a four parameter family of systems (1). In particular we illustrate how to study the local phase portraits of the singular points whose linear part is identically zero using only vertical blow ups.
期刊介绍:
Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal:
•Differential equations
•Bifurcation theory
•Hamiltonian and Lagrangian dynamics
•Hyperbolic dynamics
•Ergodic theory
•Topological and smooth dynamics
•Random dynamical systems
•Applications in technology, engineering and natural and life sciences