抗HIV-1的广泛中和抗体及其应用概念

IF 5.7 2区 医学 Q1 VIROLOGY
Henning Gruell , Philipp Schommers
{"title":"抗HIV-1的广泛中和抗体及其应用概念","authors":"Henning Gruell ,&nbsp;Philipp Schommers","doi":"10.1016/j.coviro.2022.101211","DOIUrl":null,"url":null,"abstract":"<div><p>Potent broadly neutralizing antibodies (bNAbs) targeting HIV-1 exhibit significant antiviral activity in humans. Recent advances have demonstrated that novel antibodies and bNAb combinations can effectively restrict the development of viral escape mutations. Moreover, passive immunization trials have provided proof-of-principle for bNAb-mediated prevention of infection with antibody-sensitive HIV-1 strains. In contrast, clinical studies investigating the activity of HIV-1 bNAbs on the latent reservoir failed to demonstrate substantial effects. Clinical adoption of HIV-1 bNAbs will require the development of more potent and broadly active antibodies as well as their implementation in optimized strategies to fully harness the capabilities of bNAbs. We review preclinical and clinical studies on HIV-1 bNAbs to highlight their potential and remaining limitations.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"54 ","pages":"Article 101211"},"PeriodicalIF":5.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Broadly neutralizing antibodies against HIV-1 and concepts for application\",\"authors\":\"Henning Gruell ,&nbsp;Philipp Schommers\",\"doi\":\"10.1016/j.coviro.2022.101211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Potent broadly neutralizing antibodies (bNAbs) targeting HIV-1 exhibit significant antiviral activity in humans. Recent advances have demonstrated that novel antibodies and bNAb combinations can effectively restrict the development of viral escape mutations. Moreover, passive immunization trials have provided proof-of-principle for bNAb-mediated prevention of infection with antibody-sensitive HIV-1 strains. In contrast, clinical studies investigating the activity of HIV-1 bNAbs on the latent reservoir failed to demonstrate substantial effects. Clinical adoption of HIV-1 bNAbs will require the development of more potent and broadly active antibodies as well as their implementation in optimized strategies to fully harness the capabilities of bNAbs. We review preclinical and clinical studies on HIV-1 bNAbs to highlight their potential and remaining limitations.</p></div>\",\"PeriodicalId\":11082,\"journal\":{\"name\":\"Current opinion in virology\",\"volume\":\"54 \",\"pages\":\"Article 101211\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879625722000207\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879625722000207","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 13

摘要

针对HIV-1的强效广泛中和抗体(bNAbs)在人类中表现出显著的抗病毒活性。最近的进展表明,新的抗体和bNAb组合可以有效地限制病毒逃逸突变的发展。此外,被动免疫试验已经为bnab介导的抗体敏感HIV-1毒株感染预防提供了原理证明。相比之下,研究HIV-1 bNAbs对潜伏库活性的临床研究未能显示出实质性的影响。HIV-1 bNAbs的临床应用将需要开发更有效和广泛活性的抗体,以及优化策略,以充分利用bNAbs的能力。我们回顾了HIV-1 bNAbs的临床前和临床研究,以强调其潜力和仍然存在的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Broadly neutralizing antibodies against HIV-1 and concepts for application

Potent broadly neutralizing antibodies (bNAbs) targeting HIV-1 exhibit significant antiviral activity in humans. Recent advances have demonstrated that novel antibodies and bNAb combinations can effectively restrict the development of viral escape mutations. Moreover, passive immunization trials have provided proof-of-principle for bNAb-mediated prevention of infection with antibody-sensitive HIV-1 strains. In contrast, clinical studies investigating the activity of HIV-1 bNAbs on the latent reservoir failed to demonstrate substantial effects. Clinical adoption of HIV-1 bNAbs will require the development of more potent and broadly active antibodies as well as their implementation in optimized strategies to fully harness the capabilities of bNAbs. We review preclinical and clinical studies on HIV-1 bNAbs to highlight their potential and remaining limitations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
5.10%
发文量
76
审稿时长
83 days
期刊介绍: Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信