Shen Zx, Zhu Jindan, Wang Du, Xu Jia-min, Huang Huangdong, Zhang Haoqi, Cai Penghui, Chen Hu
{"title":"磁测增压缸失效风险评估","authors":"Shen Zx, Zhu Jindan, Wang Du, Xu Jia-min, Huang Huangdong, Zhang Haoqi, Cai Penghui, Chen Hu","doi":"10.1115/1.4062587","DOIUrl":null,"url":null,"abstract":"\n Failure risk assessment of pressure vessels and piping systems is an important part of their integrity management. Obviously, there are many shortcomings in risk analysis using only traditional procedures, which are mostly qualitative or conservative by nature. This study develops a novel limit analysis method using quantitative magnetic measurements to determine the failure risk of steel vessels. Firstly, the correlation between the physico-mechanical properties of a pressurized steel cylinder and the magnetic coercive force was obtained by hydraulic tests, it is found that increasing internal pressure leads to an increase in the coercive force, and the magnetomechanical behaviour can be described by a linear general expression. By solving the inverse problem, it is possible to diagnose the transition of the structure to the yield region or the fracture region based on the measurements of coercivity, which enables us to conduct the risk assessment prior to the failure of a pressurized cylinder, validated by a full-scale hydrostatic burst test. Finally, a quantitative criteria for identifying the structural failure of the pressurized cylinder was established based on coercivity measurements.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure Risk Assessment Of Pressurized Cylinder By Magnetic Measurements\",\"authors\":\"Shen Zx, Zhu Jindan, Wang Du, Xu Jia-min, Huang Huangdong, Zhang Haoqi, Cai Penghui, Chen Hu\",\"doi\":\"10.1115/1.4062587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Failure risk assessment of pressure vessels and piping systems is an important part of their integrity management. Obviously, there are many shortcomings in risk analysis using only traditional procedures, which are mostly qualitative or conservative by nature. This study develops a novel limit analysis method using quantitative magnetic measurements to determine the failure risk of steel vessels. Firstly, the correlation between the physico-mechanical properties of a pressurized steel cylinder and the magnetic coercive force was obtained by hydraulic tests, it is found that increasing internal pressure leads to an increase in the coercive force, and the magnetomechanical behaviour can be described by a linear general expression. By solving the inverse problem, it is possible to diagnose the transition of the structure to the yield region or the fracture region based on the measurements of coercivity, which enables us to conduct the risk assessment prior to the failure of a pressurized cylinder, validated by a full-scale hydrostatic burst test. Finally, a quantitative criteria for identifying the structural failure of the pressurized cylinder was established based on coercivity measurements.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062587\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062587","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Failure Risk Assessment Of Pressurized Cylinder By Magnetic Measurements
Failure risk assessment of pressure vessels and piping systems is an important part of their integrity management. Obviously, there are many shortcomings in risk analysis using only traditional procedures, which are mostly qualitative or conservative by nature. This study develops a novel limit analysis method using quantitative magnetic measurements to determine the failure risk of steel vessels. Firstly, the correlation between the physico-mechanical properties of a pressurized steel cylinder and the magnetic coercive force was obtained by hydraulic tests, it is found that increasing internal pressure leads to an increase in the coercive force, and the magnetomechanical behaviour can be described by a linear general expression. By solving the inverse problem, it is possible to diagnose the transition of the structure to the yield region or the fracture region based on the measurements of coercivity, which enables us to conduct the risk assessment prior to the failure of a pressurized cylinder, validated by a full-scale hydrostatic burst test. Finally, a quantitative criteria for identifying the structural failure of the pressurized cylinder was established based on coercivity measurements.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.