方筛的几何推广,并应用于循环盖

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2022-12-10 DOI:10.1112/mtk.12180
Alina Bucur, Alina Carmen Cojocaru, Matilde N. Lalín, Lillian B. Pierce
{"title":"方筛的几何推广,并应用于循环盖","authors":"Alina Bucur,&nbsp;Alina Carmen Cojocaru,&nbsp;Matilde N. Lalín,&nbsp;Lillian B. Pierce","doi":"10.1112/mtk.12180","DOIUrl":null,"url":null,"abstract":"<p>We formulate a general problem: Given projective schemes <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$\\mathbb {Y}$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathbb {X}$</annotation>\n </semantics></math> over a global field <i>K</i> and a <i>K</i>-morphism η from <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$\\mathbb {Y}$</annotation>\n </semantics></math> to <math>\n <semantics>\n <mi>X</mi>\n <annotation>$\\mathbb {X}$</annotation>\n </semantics></math> of finite degree, how many points in <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {X}(K)$</annotation>\n </semantics></math> of height at most <i>B</i> have a pre-image under η in <math>\n <semantics>\n <mrow>\n <mi>Y</mi>\n <mo>(</mo>\n <mi>K</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathbb {Y}(K)$</annotation>\n </semantics></math>? This problem is inspired by a well-known conjecture of Serre on quantitative upper bounds for the number of points of bounded height on an irreducible projective variety defined over a number field. We give a nontrivial answer to the general problem when <math>\n <semantics>\n <mrow>\n <mi>K</mi>\n <mo>=</mo>\n <msub>\n <mi>F</mi>\n <mi>q</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>T</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$K=\\mathbb {F}_q(T)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mi>Y</mi>\n <annotation>$\\mathbb {Y}$</annotation>\n </semantics></math> is a prime degree cyclic cover of <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>=</mo>\n <msubsup>\n <mi>P</mi>\n <mi>K</mi>\n <mi>n</mi>\n </msubsup>\n </mrow>\n <annotation>$\\mathbb {X}=\\mathbb {P}_{K}^n$</annotation>\n </semantics></math>. Our tool is a new geometric sieve, which generalizes the polynomial sieve to a geometric setting over global function fields.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Geometric generalizations of the square sieve, with an application to cyclic covers\",\"authors\":\"Alina Bucur,&nbsp;Alina Carmen Cojocaru,&nbsp;Matilde N. Lalín,&nbsp;Lillian B. Pierce\",\"doi\":\"10.1112/mtk.12180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We formulate a general problem: Given projective schemes <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$\\\\mathbb {Y}$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$\\\\mathbb {X}$</annotation>\\n </semantics></math> over a global field <i>K</i> and a <i>K</i>-morphism η from <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$\\\\mathbb {Y}$</annotation>\\n </semantics></math> to <math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$\\\\mathbb {X}$</annotation>\\n </semantics></math> of finite degree, how many points in <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {X}(K)$</annotation>\\n </semantics></math> of height at most <i>B</i> have a pre-image under η in <math>\\n <semantics>\\n <mrow>\\n <mi>Y</mi>\\n <mo>(</mo>\\n <mi>K</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathbb {Y}(K)$</annotation>\\n </semantics></math>? This problem is inspired by a well-known conjecture of Serre on quantitative upper bounds for the number of points of bounded height on an irreducible projective variety defined over a number field. We give a nontrivial answer to the general problem when <math>\\n <semantics>\\n <mrow>\\n <mi>K</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>F</mi>\\n <mi>q</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$K=\\\\mathbb {F}_q(T)$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mi>Y</mi>\\n <annotation>$\\\\mathbb {Y}$</annotation>\\n </semantics></math> is a prime degree cyclic cover of <math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>=</mo>\\n <msubsup>\\n <mi>P</mi>\\n <mi>K</mi>\\n <mi>n</mi>\\n </msubsup>\\n </mrow>\\n <annotation>$\\\\mathbb {X}=\\\\mathbb {P}_{K}^n$</annotation>\\n </semantics></math>. Our tool is a new geometric sieve, which generalizes the polynomial sieve to a geometric setting over global function fields.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12180\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12180","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

我们公式化了一个一般问题:给定全局域K上的投影方案Y$\mathbb{Y}$和X$\mathbb{X}$,以及从Y$\math bb{Y}$到X$\math BB{X}$的有限度K态射η,在Y(K)$\mathbb{Y}(K)$中,至多有多少个高度为B的点在η下具有预像?这个问题的灵感来自Serre关于在数域上定义的不可约投影变种上有界高度的点的数量上限的一个众所周知的猜想。当K=Fq(T)$K=\mathbb时,我们给出了一般问题的一个非平凡答案{F}_q(T) $和Y$\mathbb{Y}$是X=PKn$\mathbb{X}=\mathbb的素数循环覆盖{P}_{K} ^n$。我们的工具是一个新的几何筛,它将多项式筛推广到全局函数域上的几何设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric generalizations of the square sieve, with an application to cyclic covers

We formulate a general problem: Given projective schemes Y $\mathbb {Y}$ and X $\mathbb {X}$ over a global field K and a K-morphism η from Y $\mathbb {Y}$ to X $\mathbb {X}$ of finite degree, how many points in X ( K ) $\mathbb {X}(K)$ of height at most B have a pre-image under η in Y ( K ) $\mathbb {Y}(K)$ ? This problem is inspired by a well-known conjecture of Serre on quantitative upper bounds for the number of points of bounded height on an irreducible projective variety defined over a number field. We give a nontrivial answer to the general problem when K = F q ( T ) $K=\mathbb {F}_q(T)$ and Y $\mathbb {Y}$ is a prime degree cyclic cover of X = P K n $\mathbb {X}=\mathbb {P}_{K}^n$ . Our tool is a new geometric sieve, which generalizes the polynomial sieve to a geometric setting over global function fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信