Stephen Howcutt, M. Spagnolo, B. Rea, Jan Jaszewski, I. Barr, D. Coppola, L. de Siena, T. Girona, Andie Gomez-Patron, D. Mullan, M. Pritchard
{"title":"冰冻温度计:量化火山热对冰川高度的影响","authors":"Stephen Howcutt, M. Spagnolo, B. Rea, Jan Jaszewski, I. Barr, D. Coppola, L. de Siena, T. Girona, Andie Gomez-Patron, D. Mullan, M. Pritchard","doi":"10.1130/g51411.1","DOIUrl":null,"url":null,"abstract":"We present a continentwide study of 600 glaciers located on and near 37 ice-clad volcanoes in South America. Results demonstrate glacier sensitivity to volcanic heat. We distinguished between “volcanic glaciers” (≤1 km from volcanic centers; n = 74), and “proximal glaciers” (1−15 km; n = 526) and calculated their equilibrium line altitudes (ELAs). For each ice-clad volcano, we compared the ELAs of its volcanic glaciers to those of its proximal glaciers, which showed that the ELAs of the former are higher than the ELAs of the latter. ∆ELAmean, defined as the offset between the mean ELA of the volcanic glaciers compared with that of the proximal glaciers, was calculated for each ice-clad volcano. ∆ELAmean was positive for 92% of the 37 volcanoes, and a quantitative relationship between ΔELAmean and volcanic thermal anomaly was established. Results highlight the impact of volcanic heat on glacier elevation; emphasize the need to exclude glaciers on, or near, volcanoes from glacier-climate investigations; and demonstrate the first-order potential for glaciers as “volcanic thermometers.” Volcanic-glacier monitoring could contribute to our understanding of magmatic and thermal activity, with changes in glacier geometries potentially reflecting long-term fluctuations in volcanic heat and unrest.","PeriodicalId":12642,"journal":{"name":"Geology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Icy thermometers: Quantifying the impact of volcanic heat on glacier elevation\",\"authors\":\"Stephen Howcutt, M. Spagnolo, B. Rea, Jan Jaszewski, I. Barr, D. Coppola, L. de Siena, T. Girona, Andie Gomez-Patron, D. Mullan, M. Pritchard\",\"doi\":\"10.1130/g51411.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a continentwide study of 600 glaciers located on and near 37 ice-clad volcanoes in South America. Results demonstrate glacier sensitivity to volcanic heat. We distinguished between “volcanic glaciers” (≤1 km from volcanic centers; n = 74), and “proximal glaciers” (1−15 km; n = 526) and calculated their equilibrium line altitudes (ELAs). For each ice-clad volcano, we compared the ELAs of its volcanic glaciers to those of its proximal glaciers, which showed that the ELAs of the former are higher than the ELAs of the latter. ∆ELAmean, defined as the offset between the mean ELA of the volcanic glaciers compared with that of the proximal glaciers, was calculated for each ice-clad volcano. ∆ELAmean was positive for 92% of the 37 volcanoes, and a quantitative relationship between ΔELAmean and volcanic thermal anomaly was established. Results highlight the impact of volcanic heat on glacier elevation; emphasize the need to exclude glaciers on, or near, volcanoes from glacier-climate investigations; and demonstrate the first-order potential for glaciers as “volcanic thermometers.” Volcanic-glacier monitoring could contribute to our understanding of magmatic and thermal activity, with changes in glacier geometries potentially reflecting long-term fluctuations in volcanic heat and unrest.\",\"PeriodicalId\":12642,\"journal\":{\"name\":\"Geology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/g51411.1\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/g51411.1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Icy thermometers: Quantifying the impact of volcanic heat on glacier elevation
We present a continentwide study of 600 glaciers located on and near 37 ice-clad volcanoes in South America. Results demonstrate glacier sensitivity to volcanic heat. We distinguished between “volcanic glaciers” (≤1 km from volcanic centers; n = 74), and “proximal glaciers” (1−15 km; n = 526) and calculated their equilibrium line altitudes (ELAs). For each ice-clad volcano, we compared the ELAs of its volcanic glaciers to those of its proximal glaciers, which showed that the ELAs of the former are higher than the ELAs of the latter. ∆ELAmean, defined as the offset between the mean ELA of the volcanic glaciers compared with that of the proximal glaciers, was calculated for each ice-clad volcano. ∆ELAmean was positive for 92% of the 37 volcanoes, and a quantitative relationship between ΔELAmean and volcanic thermal anomaly was established. Results highlight the impact of volcanic heat on glacier elevation; emphasize the need to exclude glaciers on, or near, volcanoes from glacier-climate investigations; and demonstrate the first-order potential for glaciers as “volcanic thermometers.” Volcanic-glacier monitoring could contribute to our understanding of magmatic and thermal activity, with changes in glacier geometries potentially reflecting long-term fluctuations in volcanic heat and unrest.
期刊介绍:
Published since 1973, Geology features rapid publication of about 23 refereed short (four-page) papers each month. Articles cover all earth-science disciplines and include new investigations and provocative topics. Professional geologists and university-level students in the earth sciences use this widely read journal to keep up with scientific research trends. The online forum section facilitates author-reader dialog. Includes color and occasional large-format illustrations on oversized loose inserts.