L I Liu, Wen Su, Guosheng Yin, Xingqiu Zhao, Ying Zhang
{"title":"具有面板计数数据的反向均值模型的非参数推理","authors":"L I Liu, Wen Su, Guosheng Yin, Xingqiu Zhao, Ying Zhang","doi":"10.3150/21-bej1444","DOIUrl":null,"url":null,"abstract":"<p><p>Panel count data typically refer to data arising from studies with recurrent events, in which subjects are observed only at discrete time points rather than under continuous observations. We investigate a general situation where a recurrent event process is eventually truncated by an informative terminal event and we are particularly interested in behaviors of the recurrent event process near the terminal event. We propose a reversed mean model for estimating the mean function of the recurrent event process. We develop a two-stage sieve likelihood-based method to estimate the mean function, which overcomes the computational difficulties arising from a nuisance functional parameter involved in the likelihood. The consistency and the convergence rate of the two-stage estimator are established. Allowing for the convergence rate slower than the standard rate, we develop the general weak convergence theory of <i>M</i>-estimators with a nuisance functional parameter, and then apply it to the proposed estimator for deriving the asymptotic normality. Furthermore, a class of two-sample tests is developed. The proposed methods are evaluated with extensive simulation studies and illustrated with panel count data from the Chinese Longitudinal Healthy Longevity Study.</p>","PeriodicalId":55387,"journal":{"name":"Bernoulli","volume":" ","pages":"2968-2997"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030208/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nonparametric inference for reversed mean models with panel count data.\",\"authors\":\"L I Liu, Wen Su, Guosheng Yin, Xingqiu Zhao, Ying Zhang\",\"doi\":\"10.3150/21-bej1444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Panel count data typically refer to data arising from studies with recurrent events, in which subjects are observed only at discrete time points rather than under continuous observations. We investigate a general situation where a recurrent event process is eventually truncated by an informative terminal event and we are particularly interested in behaviors of the recurrent event process near the terminal event. We propose a reversed mean model for estimating the mean function of the recurrent event process. We develop a two-stage sieve likelihood-based method to estimate the mean function, which overcomes the computational difficulties arising from a nuisance functional parameter involved in the likelihood. The consistency and the convergence rate of the two-stage estimator are established. Allowing for the convergence rate slower than the standard rate, we develop the general weak convergence theory of <i>M</i>-estimators with a nuisance functional parameter, and then apply it to the proposed estimator for deriving the asymptotic normality. Furthermore, a class of two-sample tests is developed. The proposed methods are evaluated with extensive simulation studies and illustrated with panel count data from the Chinese Longitudinal Healthy Longevity Study.</p>\",\"PeriodicalId\":55387,\"journal\":{\"name\":\"Bernoulli\",\"volume\":\" \",\"pages\":\"2968-2997\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030208/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bernoulli\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3150/21-bej1444\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bernoulli","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3150/21-bej1444","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Nonparametric inference for reversed mean models with panel count data.
Panel count data typically refer to data arising from studies with recurrent events, in which subjects are observed only at discrete time points rather than under continuous observations. We investigate a general situation where a recurrent event process is eventually truncated by an informative terminal event and we are particularly interested in behaviors of the recurrent event process near the terminal event. We propose a reversed mean model for estimating the mean function of the recurrent event process. We develop a two-stage sieve likelihood-based method to estimate the mean function, which overcomes the computational difficulties arising from a nuisance functional parameter involved in the likelihood. The consistency and the convergence rate of the two-stage estimator are established. Allowing for the convergence rate slower than the standard rate, we develop the general weak convergence theory of M-estimators with a nuisance functional parameter, and then apply it to the proposed estimator for deriving the asymptotic normality. Furthermore, a class of two-sample tests is developed. The proposed methods are evaluated with extensive simulation studies and illustrated with panel count data from the Chinese Longitudinal Healthy Longevity Study.
期刊介绍:
BERNOULLI is the journal of the Bernoulli Society for Mathematical Statistics and Probability, issued four times per year. The journal provides a comprehensive account of important developments in the fields of statistics and probability, offering an international forum for both theoretical and applied work.
BERNOULLI will publish:
Papers containing original and significant research contributions: with background, mathematical derivation and discussion of the results in suitable detail and, where appropriate, with discussion of interesting applications in relation to the methodology proposed.
Papers of the following two types will also be considered for publication, provided they are judged to enhance the dissemination of research:
Review papers which provide an integrated critical survey of some area of probability and statistics and discuss important recent developments.
Scholarly written papers on some historical significant aspect of statistics and probability.