{"title":"右美托咪定靶向miR-101-3p介导的EndMT对糖尿病小鼠肾纤维化的保护作用","authors":"Li Song, Songling Feng, Hao Yu, Sen Shi","doi":"10.1177/15593258221083486","DOIUrl":null,"url":null,"abstract":"Objective: Our main purpose is to explore the effect and mechanism of Dexmedetomidine (DEX) in diabetic nephropathy fibrosis. Methods: Diabetic model was established by intraperitoneal injection of streptozotocin (STZ) treated CD-1 mice and high glucose cultured human dermal microvascular endothelial cells (HMVECs). Immunofluorescence was used to detect renal endothelial-mesenchymal transition (EndMT); Hematoxylin and Eosin (HE) staining and Masson’s Trichrome Staining (MTS) was used to analyze renal fibrosis; CCK-8 was used to evaluate cell viability; Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of miR-101-3p; Western blots were utilized to judge the protein expression levels of EndMT, extracellular matrix and TGF-β1/Smad3 signal pathway. Results: In this study, we first found that the protective effect of DEX on DN was related to EndMT. DEX alleviated kidney fibrosis by inhibiting EndMT in diabetic CD-1 mice. DEX could also inhibit high glucose-induced HMVECs EndMT. Then, we confirmed that miR-101-3p was the regulatory target of DEX. The expression of miR-101-3p was decreased in diabetic CD-1 mice and high glucose-induced HMVECs. After DEX treatment, the miR-101-3p increased, and the inhibition of miR-101-3p could counteract the protective effect of DEX and aggravate the EndMT. Finally, we found that the TGF- β1/Smad3 signal pathway was involved in the protective effect of DEX on DN. DEX inhibited the activation of TGF-β1/Smad3 signal pathway. On the contrary, inhibiting miR-101-3p promoted the expression of TGF-β1/Smad3. Conclusion: DEX protects kidney fibrosis in diabetic mice by targeting miR-101-3p-mediated EndMT.","PeriodicalId":11285,"journal":{"name":"Dose-Response","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dexmedetomidine Protects Against Kidney Fibrosis in Diabetic Mice by Targeting miR-101-3p-Mediated EndMT\",\"authors\":\"Li Song, Songling Feng, Hao Yu, Sen Shi\",\"doi\":\"10.1177/15593258221083486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Our main purpose is to explore the effect and mechanism of Dexmedetomidine (DEX) in diabetic nephropathy fibrosis. Methods: Diabetic model was established by intraperitoneal injection of streptozotocin (STZ) treated CD-1 mice and high glucose cultured human dermal microvascular endothelial cells (HMVECs). Immunofluorescence was used to detect renal endothelial-mesenchymal transition (EndMT); Hematoxylin and Eosin (HE) staining and Masson’s Trichrome Staining (MTS) was used to analyze renal fibrosis; CCK-8 was used to evaluate cell viability; Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of miR-101-3p; Western blots were utilized to judge the protein expression levels of EndMT, extracellular matrix and TGF-β1/Smad3 signal pathway. Results: In this study, we first found that the protective effect of DEX on DN was related to EndMT. DEX alleviated kidney fibrosis by inhibiting EndMT in diabetic CD-1 mice. DEX could also inhibit high glucose-induced HMVECs EndMT. Then, we confirmed that miR-101-3p was the regulatory target of DEX. The expression of miR-101-3p was decreased in diabetic CD-1 mice and high glucose-induced HMVECs. After DEX treatment, the miR-101-3p increased, and the inhibition of miR-101-3p could counteract the protective effect of DEX and aggravate the EndMT. Finally, we found that the TGF- β1/Smad3 signal pathway was involved in the protective effect of DEX on DN. DEX inhibited the activation of TGF-β1/Smad3 signal pathway. On the contrary, inhibiting miR-101-3p promoted the expression of TGF-β1/Smad3. Conclusion: DEX protects kidney fibrosis in diabetic mice by targeting miR-101-3p-mediated EndMT.\",\"PeriodicalId\":11285,\"journal\":{\"name\":\"Dose-Response\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dose-Response\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15593258221083486\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dose-Response","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15593258221083486","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Dexmedetomidine Protects Against Kidney Fibrosis in Diabetic Mice by Targeting miR-101-3p-Mediated EndMT
Objective: Our main purpose is to explore the effect and mechanism of Dexmedetomidine (DEX) in diabetic nephropathy fibrosis. Methods: Diabetic model was established by intraperitoneal injection of streptozotocin (STZ) treated CD-1 mice and high glucose cultured human dermal microvascular endothelial cells (HMVECs). Immunofluorescence was used to detect renal endothelial-mesenchymal transition (EndMT); Hematoxylin and Eosin (HE) staining and Masson’s Trichrome Staining (MTS) was used to analyze renal fibrosis; CCK-8 was used to evaluate cell viability; Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of miR-101-3p; Western blots were utilized to judge the protein expression levels of EndMT, extracellular matrix and TGF-β1/Smad3 signal pathway. Results: In this study, we first found that the protective effect of DEX on DN was related to EndMT. DEX alleviated kidney fibrosis by inhibiting EndMT in diabetic CD-1 mice. DEX could also inhibit high glucose-induced HMVECs EndMT. Then, we confirmed that miR-101-3p was the regulatory target of DEX. The expression of miR-101-3p was decreased in diabetic CD-1 mice and high glucose-induced HMVECs. After DEX treatment, the miR-101-3p increased, and the inhibition of miR-101-3p could counteract the protective effect of DEX and aggravate the EndMT. Finally, we found that the TGF- β1/Smad3 signal pathway was involved in the protective effect of DEX on DN. DEX inhibited the activation of TGF-β1/Smad3 signal pathway. On the contrary, inhibiting miR-101-3p promoted the expression of TGF-β1/Smad3. Conclusion: DEX protects kidney fibrosis in diabetic mice by targeting miR-101-3p-mediated EndMT.
Dose-ResponsePHARMACOLOGY & PHARMACY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
4.90
自引率
4.00%
发文量
140
审稿时长
>12 weeks
期刊介绍:
Dose-Response is an open access peer-reviewed online journal publishing original findings and commentaries on the occurrence of dose-response relationships across a broad range of disciplines. Particular interest focuses on experimental evidence providing mechanistic understanding of nonlinear dose-response relationships.