中规定高斯曲率问题的一种流方法ℍ𝑛+1.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haizhong Li, Ruijia Zhang
{"title":"中规定高斯曲率问题的一种流方法ℍ𝑛+1.","authors":"Haizhong Li, Ruijia Zhang","doi":"10.1515/acv-2022-0033","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the following prescribed Gaussian curvature problem: K = f ~ ⁢ ( θ ) ϕ ⁢ ( ρ ) α − 2 ⁢ ϕ ⁢ ( ρ ) 2 + | ∇ ¯ ⁢ ρ | 2 , K=\\frac{\\tilde{f}(\\theta)}{\\phi(\\rho)^{\\alpha-2}\\sqrt{\\phi(\\rho)^{2}+\\lvert\\overline{\\nabla}\\rho\\rvert^{2}}}, a generalization of the Alexandrov problem ( α = n + 1 \\alpha=n+1 ) in hyperbolic space, where f ~ \\tilde{f} is a smooth positive function on S n \\mathbb{S}^{n} , 𝜌 is the radial function of the hypersurface, ϕ ⁢ ( ρ ) = sinh ⁡ ρ \\phi(\\rho)=\\sinh\\rho and 𝐾 is the Gauss curvature. By a flow approach, we obtain the existence and uniqueness of solutions to the above equations when α ≥ n + 1 \\alpha\\geq n+1 . Our argument provides a parabolic proof in smooth category for the Alexandrov problem in H n + 1 \\mathbb{H}^{n+1} . We also consider the cases 2 < α ≤ n + 1 2<\\alpha\\leq n+1 under the evenness assumption of f ~ \\tilde{f} and prove the existence of solutions to the above equations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flow approach to the prescribed Gaussian curvature problem in ℍ𝑛+1\",\"authors\":\"Haizhong Li, Ruijia Zhang\",\"doi\":\"10.1515/acv-2022-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the following prescribed Gaussian curvature problem: K = f ~ ⁢ ( θ ) ϕ ⁢ ( ρ ) α − 2 ⁢ ϕ ⁢ ( ρ ) 2 + | ∇ ¯ ⁢ ρ | 2 , K=\\\\frac{\\\\tilde{f}(\\\\theta)}{\\\\phi(\\\\rho)^{\\\\alpha-2}\\\\sqrt{\\\\phi(\\\\rho)^{2}+\\\\lvert\\\\overline{\\\\nabla}\\\\rho\\\\rvert^{2}}}, a generalization of the Alexandrov problem ( α = n + 1 \\\\alpha=n+1 ) in hyperbolic space, where f ~ \\\\tilde{f} is a smooth positive function on S n \\\\mathbb{S}^{n} , 𝜌 is the radial function of the hypersurface, ϕ ⁢ ( ρ ) = sinh ⁡ ρ \\\\phi(\\\\rho)=\\\\sinh\\\\rho and 𝐾 is the Gauss curvature. By a flow approach, we obtain the existence and uniqueness of solutions to the above equations when α ≥ n + 1 \\\\alpha\\\\geq n+1 . Our argument provides a parabolic proof in smooth category for the Alexandrov problem in H n + 1 \\\\mathbb{H}^{n+1} . We also consider the cases 2 < α ≤ n + 1 2<\\\\alpha\\\\leq n+1 under the evenness assumption of f ~ \\\\tilde{f} and prove the existence of solutions to the above equations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/acv-2022-0033\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/acv-2022-0033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了下列规定的高斯曲率问题:K= f∞(θ) φ (ρ) α−2∑φ (ρ) 2 + |∇φ (ρ) 2 + |, K= \frac{\tilde{f}(\theta)}{\phi(\rho)^{\alpha-2}\sqrt{\phi(\rho)^{2}+\lvert\overline{\nabla}\rho\rvert^{2}}},双曲空间中Alexandrov问题(α =n+1 \alpha =n+1)的推广,其中f \tilde{f}是S n上的光滑正函数\mathbb{S} ^ {n},𝜌是超曲面的径向函数,φ (ρ)= sinh (ρ) \phi (\rho)= \sinh\rho,𝐾是高斯曲率。利用流动法,我们得到了当α≥n+1 \alpha\geq n+1时,上述方程解的存在唯一性。本文给出了H n + 1条件下Alexandrov问题在光滑范畴内的抛物证明\mathbb{H} ^ {n+1}。在f \tilde{f}的均匀性假设下,考虑了2< α≤n+1 2< \alpha\leq n+1的情况,证明了上述方程解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A flow approach to the prescribed Gaussian curvature problem in ℍ𝑛+1
Abstract In this paper, we study the following prescribed Gaussian curvature problem: K = f ~ ⁢ ( θ ) ϕ ⁢ ( ρ ) α − 2 ⁢ ϕ ⁢ ( ρ ) 2 + | ∇ ¯ ⁢ ρ | 2 , K=\frac{\tilde{f}(\theta)}{\phi(\rho)^{\alpha-2}\sqrt{\phi(\rho)^{2}+\lvert\overline{\nabla}\rho\rvert^{2}}}, a generalization of the Alexandrov problem ( α = n + 1 \alpha=n+1 ) in hyperbolic space, where f ~ \tilde{f} is a smooth positive function on S n \mathbb{S}^{n} , 𝜌 is the radial function of the hypersurface, ϕ ⁢ ( ρ ) = sinh ⁡ ρ \phi(\rho)=\sinh\rho and 𝐾 is the Gauss curvature. By a flow approach, we obtain the existence and uniqueness of solutions to the above equations when α ≥ n + 1 \alpha\geq n+1 . Our argument provides a parabolic proof in smooth category for the Alexandrov problem in H n + 1 \mathbb{H}^{n+1} . We also consider the cases 2 < α ≤ n + 1 2<\alpha\leq n+1 under the evenness assumption of f ~ \tilde{f} and prove the existence of solutions to the above equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信