不同高度对固体火箭近场反弹道形成的影响

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Peigao Zeng, Yi Jiang, Lina Yang, Ying Yang, Song Yan
{"title":"不同高度对固体火箭近场反弹道形成的影响","authors":"Peigao Zeng, Yi Jiang, Lina Yang, Ying Yang, Song Yan","doi":"10.1155/2023/6577249","DOIUrl":null,"url":null,"abstract":"Detecting the infrared characteristics of the contrails is a reasonable approach to tracing the rocket, and the particle properties of the contrails are the basis of the infrared analysis. The conventional numerical approach to obtaining the particle properties is a Euler/Lagrange method or a simple Euler/Euler method, difficultly obtaining more accurate results because it ignores the particle size distribution in parcels or cells. A modified Euler/Euler method is applied to simulate the contrail formation in the near field of a solid rocket motor at different altitudes, which considers the size distribution by adding the first- to second-order particle radius moments based on the simple Euler/Euler method. The simulation results show that the crystals are generated at altitudes from 10 km to 20 km and that the contrails are visible at altitudes from 10 km to 15 km, where the radii of the crystals are from 0.1 μm to 0.3 μm. The visible contrails indicate that aviation vehicles are cruising at altitudes from 10 km to 15 km, and the smaller crystals indicate that the contrails are generated by rockets, not aircraft. Our work can provide important insight for the follow-up infrared analysis of the contrails based on the obtained particle radii.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Different Altitudes on the Solid Rocket Contrail Formation in the Near Field\",\"authors\":\"Peigao Zeng, Yi Jiang, Lina Yang, Ying Yang, Song Yan\",\"doi\":\"10.1155/2023/6577249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting the infrared characteristics of the contrails is a reasonable approach to tracing the rocket, and the particle properties of the contrails are the basis of the infrared analysis. The conventional numerical approach to obtaining the particle properties is a Euler/Lagrange method or a simple Euler/Euler method, difficultly obtaining more accurate results because it ignores the particle size distribution in parcels or cells. A modified Euler/Euler method is applied to simulate the contrail formation in the near field of a solid rocket motor at different altitudes, which considers the size distribution by adding the first- to second-order particle radius moments based on the simple Euler/Euler method. The simulation results show that the crystals are generated at altitudes from 10 km to 20 km and that the contrails are visible at altitudes from 10 km to 15 km, where the radii of the crystals are from 0.1 μm to 0.3 μm. The visible contrails indicate that aviation vehicles are cruising at altitudes from 10 km to 15 km, and the smaller crystals indicate that the contrails are generated by rockets, not aircraft. Our work can provide important insight for the follow-up infrared analysis of the contrails based on the obtained particle radii.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6577249\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6577249","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

探测轨迹的红外特性是跟踪火箭的合理方法,轨迹的粒子特性是红外分析的基础。获得颗粒性质的传统数值方法是欧拉/拉格朗日方法或简单的欧拉/欧拉方法,由于它忽略了颗粒在包裹或单元中的尺寸分布,因此难以获得更准确的结果。将改进的欧拉/欧拉方法应用于不同高度固体火箭发动机近场轨迹形成的模拟,该方法在简单欧拉/欧拉法的基础上,通过添加一阶到二阶粒子半径矩来考虑尺寸分布。模拟结果表明,这些晶体是在10 km至20 公里,并且在10公里的高度可以看到轨迹 km至15 km,其中晶体的半径为0.1 μm至0.3 μm。可见的轨迹表明航空飞行器在10 km至15 公里,较小的晶体表明轨迹是由火箭产生的,而不是飞机。我们的工作可以根据获得的粒子半径为后续的轨迹红外分析提供重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Different Altitudes on the Solid Rocket Contrail Formation in the Near Field
Detecting the infrared characteristics of the contrails is a reasonable approach to tracing the rocket, and the particle properties of the contrails are the basis of the infrared analysis. The conventional numerical approach to obtaining the particle properties is a Euler/Lagrange method or a simple Euler/Euler method, difficultly obtaining more accurate results because it ignores the particle size distribution in parcels or cells. A modified Euler/Euler method is applied to simulate the contrail formation in the near field of a solid rocket motor at different altitudes, which considers the size distribution by adding the first- to second-order particle radius moments based on the simple Euler/Euler method. The simulation results show that the crystals are generated at altitudes from 10 km to 20 km and that the contrails are visible at altitudes from 10 km to 15 km, where the radii of the crystals are from 0.1 μm to 0.3 μm. The visible contrails indicate that aviation vehicles are cruising at altitudes from 10 km to 15 km, and the smaller crystals indicate that the contrails are generated by rockets, not aircraft. Our work can provide important insight for the follow-up infrared analysis of the contrails based on the obtained particle radii.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信