在集合和函数的强链上

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-01-03 DOI:10.1112/mtk.12183
Tanmay C. Inamdar
{"title":"在集合和函数的强链上","authors":"Tanmay C. Inamdar","doi":"10.1112/mtk.12183","DOIUrl":null,"url":null,"abstract":"<p>Shelah has shown that there are no chains of length ω<sub>3</sub> increasing modulo finite in <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n </msup>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>${}^{\\omega _2}\\omega _2$</annotation>\n </semantics></math>. We improve this result to sets. That is, we show that there are no chains of length ω<sub>3</sub> in <math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>2</mn>\n </msub>\n </msup>\n <annotation>$[\\omega _2]^{\\aleph _2}$</annotation>\n </semantics></math> increasing modulo finite. This contrasts with results of Koszmider who has shown that there are, consistently, chains of length ω<sub>2</sub> increasing modulo finite in <math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <msub>\n <mi>ℵ</mi>\n <mn>1</mn>\n </msub>\n </msup>\n <annotation>$[\\omega _1]^{\\aleph _1}$</annotation>\n </semantics></math> as well as in <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </msup>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n </mrow>\n <annotation>${}^{\\omega _1}\\omega _1$</annotation>\n </semantics></math>. More generally, we study the depth of function spaces <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mi>κ</mi>\n </msup>\n <mi>μ</mi>\n </mrow>\n <annotation>${}^\\kappa \\mu$</annotation>\n </semantics></math> quotiented by the ideal <math>\n <semantics>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>κ</mi>\n <mo>]</mo>\n </mrow>\n <mrow>\n <mo>&lt;</mo>\n <mi>θ</mi>\n </mrow>\n </msup>\n <annotation>$[\\kappa ]^{&lt; \\theta }$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <mi>θ</mi>\n <mo>&lt;</mo>\n <mi>κ</mi>\n </mrow>\n <annotation>$\\theta &lt; \\kappa$</annotation>\n </semantics></math> are infinite cardinals.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"69 1","pages":"286-301"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12183","citationCount":"1","resultStr":"{\"title\":\"On strong chains of sets and functions\",\"authors\":\"Tanmay C. Inamdar\",\"doi\":\"10.1112/mtk.12183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Shelah has shown that there are no chains of length ω<sub>3</sub> increasing modulo finite in <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n </msup>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>${}^{\\\\omega _2}\\\\omega _2$</annotation>\\n </semantics></math>. We improve this result to sets. That is, we show that there are no chains of length ω<sub>3</sub> in <math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>2</mn>\\n </msub>\\n </msup>\\n <annotation>$[\\\\omega _2]^{\\\\aleph _2}$</annotation>\\n </semantics></math> increasing modulo finite. This contrasts with results of Koszmider who has shown that there are, consistently, chains of length ω<sub>2</sub> increasing modulo finite in <math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <msub>\\n <mi>ℵ</mi>\\n <mn>1</mn>\\n </msub>\\n </msup>\\n <annotation>$[\\\\omega _1]^{\\\\aleph _1}$</annotation>\\n </semantics></math> as well as in <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n </msup>\\n <msub>\\n <mi>ω</mi>\\n <mn>1</mn>\\n </msub>\\n </mrow>\\n <annotation>${}^{\\\\omega _1}\\\\omega _1$</annotation>\\n </semantics></math>. More generally, we study the depth of function spaces <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mi>κ</mi>\\n </msup>\\n <mi>μ</mi>\\n </mrow>\\n <annotation>${}^\\\\kappa \\\\mu$</annotation>\\n </semantics></math> quotiented by the ideal <math>\\n <semantics>\\n <msup>\\n <mrow>\\n <mo>[</mo>\\n <mi>κ</mi>\\n <mo>]</mo>\\n </mrow>\\n <mrow>\\n <mo>&lt;</mo>\\n <mi>θ</mi>\\n </mrow>\\n </msup>\\n <annotation>$[\\\\kappa ]^{&lt; \\\\theta }$</annotation>\\n </semantics></math> where <math>\\n <semantics>\\n <mrow>\\n <mi>θ</mi>\\n <mo>&lt;</mo>\\n <mi>κ</mi>\\n </mrow>\\n <annotation>$\\\\theta &lt; \\\\kappa$</annotation>\\n </semantics></math> are infinite cardinals.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"69 1\",\"pages\":\"286-301\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12183\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12183\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12183","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Shelah已经证明在ω2ω2 ${}^{\omega _2}\omega _2$中不存在长度为ω3递增模有限的链。我们将这个结果改进为集合。也就是说,我们证明了在[ω2] λ 2 $[\omega _2]^{\aleph _2}$中不存在长度为ω3的链。这与Koszmider的结果相反,Koszmider已经表明,在[ω1] ω1 $[\omega _1]^{\aleph _1}$和ω1ω1 ${}^{\omega _1}\omega _1$中始终存在长度为ω2的递增模有限的链。更一般地,我们研究了理想[κ]所商的函数空间κμ ${}^\kappa \mu$的深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On strong chains of sets and functions

Shelah has shown that there are no chains of length ω3 increasing modulo finite in ω 2 ω 2 ${}^{\omega _2}\omega _2$ . We improve this result to sets. That is, we show that there are no chains of length ω3 in [ ω 2 ] 2 $[\omega _2]^{\aleph _2}$ increasing modulo finite. This contrasts with results of Koszmider who has shown that there are, consistently, chains of length ω2 increasing modulo finite in [ ω 1 ] 1 $[\omega _1]^{\aleph _1}$ as well as in ω 1 ω 1 ${}^{\omega _1}\omega _1$ . More generally, we study the depth of function spaces κ μ ${}^\kappa \mu$ quotiented by the ideal [ κ ] < θ $[\kappa ]^{< \theta }$ where θ < κ $\theta < \kappa$ are infinite cardinals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信