水解度对酸樱桃仁浓缩蛋白水解产物功能性质的影响

IF 1.3 Q4 FOOD SCIENCE & TECHNOLOGY
A. Cingöz, M. Yıldırım
{"title":"水解度对酸樱桃仁浓缩蛋白水解产物功能性质的影响","authors":"A. Cingöz, M. Yıldırım","doi":"10.21603/2308-4057-2023-2-566","DOIUrl":null,"url":null,"abstract":"During the processing of sour cherries into different foodstuffs, a large amount of kernels is produced as waste material, which creates a significant disposal problem for the food industry. Sour cherry kernels containing 25.3–35.5% of protein can be used as a functional protein source in food production. Therefore, we aimed to study the effects of hydrolysis degree on the sour cherry kernel protein hydrolysates. \nProteins were extracted from the defatted flour by isoelectric precipitation. The resulting protein concentrate was hydrolyzed (5, 10, and 15% hydrolysis) using Alcalase to yield hydrolysates. We determined their oil and water holding, emulsifying, gelation, and foaming properties, as well as apparent molecular weight distribution and proximate compositions. \nNo protein fractions greater than an apparent molecular weight of about 22 kDa were present in the hydrolysates. The hydrolysis of the protein concentrate mostly led to an increase in protein solubility. As the degree of hydrolysis increased from 5 to 15%, the water holding capacity of the hydrolysates decreased from 2.50 ± 0.03 to 2.03 ± 0.02 g water/g, indicating its deterioration. \nThe hydrolysates obtained at different degrees of hydrolysis had a better solubility than the intact protein concentrate. The oil holding capacity, the foaming stability, and the least gelation concentration of the protein concentrate could not be considerably improved by hydrolysis. In contrast, its emulsifying activity index and foaming capacity could be increased with a limited degree of hydrolysis (up to 10%).","PeriodicalId":12426,"journal":{"name":"Foods and Raw Materials","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of hydrolysis degree on the functional properties of hydrolysates from sour cherry kernel protein concentrate\",\"authors\":\"A. Cingöz, M. Yıldırım\",\"doi\":\"10.21603/2308-4057-2023-2-566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the processing of sour cherries into different foodstuffs, a large amount of kernels is produced as waste material, which creates a significant disposal problem for the food industry. Sour cherry kernels containing 25.3–35.5% of protein can be used as a functional protein source in food production. Therefore, we aimed to study the effects of hydrolysis degree on the sour cherry kernel protein hydrolysates. \\nProteins were extracted from the defatted flour by isoelectric precipitation. The resulting protein concentrate was hydrolyzed (5, 10, and 15% hydrolysis) using Alcalase to yield hydrolysates. We determined their oil and water holding, emulsifying, gelation, and foaming properties, as well as apparent molecular weight distribution and proximate compositions. \\nNo protein fractions greater than an apparent molecular weight of about 22 kDa were present in the hydrolysates. The hydrolysis of the protein concentrate mostly led to an increase in protein solubility. As the degree of hydrolysis increased from 5 to 15%, the water holding capacity of the hydrolysates decreased from 2.50 ± 0.03 to 2.03 ± 0.02 g water/g, indicating its deterioration. \\nThe hydrolysates obtained at different degrees of hydrolysis had a better solubility than the intact protein concentrate. The oil holding capacity, the foaming stability, and the least gelation concentration of the protein concentrate could not be considerably improved by hydrolysis. In contrast, its emulsifying activity index and foaming capacity could be increased with a limited degree of hydrolysis (up to 10%).\",\"PeriodicalId\":12426,\"journal\":{\"name\":\"Foods and Raw Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods and Raw Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21603/2308-4057-2023-2-566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods and Raw Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21603/2308-4057-2023-2-566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在将酸樱桃加工成不同食品的过程中,会产生大量的果仁作为废料,这给食品行业带来了重大的处理问题。酸樱桃仁含有25.3-35.5%的蛋白质,可作为食品生产中的功能性蛋白质来源。因此,我们旨在研究水解度对酸樱桃仁蛋白水解产物的影响。通过等电沉淀法从脱脂面粉中提取蛋白质。使用Alcalase将所得蛋白浓缩物水解(5%、10%和15%水解)以产生水解产物。我们测定了它们的保油性、保水性、乳化性、胶凝性和发泡性,以及表观分子量分布和近似组成。水解产物中不存在大于约22kDa的表观分子量的蛋白质级分。蛋白质浓缩物的水解主要导致蛋白质溶解度的增加。当水解度从5%增加到15%时,水解产物的持水能力从2.50±0.03克水/g降低到2.03±0.02克水/g,表明其劣化。在不同水解度下获得的水解产物比完整的蛋白质浓缩物具有更好的溶解度。水解不能显著提高蛋白质浓缩物的含油量、发泡稳定性和最小凝胶浓度。相反,它的乳化活性指数和发泡能力可以在有限的水解度(高达10%)下提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of hydrolysis degree on the functional properties of hydrolysates from sour cherry kernel protein concentrate
During the processing of sour cherries into different foodstuffs, a large amount of kernels is produced as waste material, which creates a significant disposal problem for the food industry. Sour cherry kernels containing 25.3–35.5% of protein can be used as a functional protein source in food production. Therefore, we aimed to study the effects of hydrolysis degree on the sour cherry kernel protein hydrolysates. Proteins were extracted from the defatted flour by isoelectric precipitation. The resulting protein concentrate was hydrolyzed (5, 10, and 15% hydrolysis) using Alcalase to yield hydrolysates. We determined their oil and water holding, emulsifying, gelation, and foaming properties, as well as apparent molecular weight distribution and proximate compositions. No protein fractions greater than an apparent molecular weight of about 22 kDa were present in the hydrolysates. The hydrolysis of the protein concentrate mostly led to an increase in protein solubility. As the degree of hydrolysis increased from 5 to 15%, the water holding capacity of the hydrolysates decreased from 2.50 ± 0.03 to 2.03 ± 0.02 g water/g, indicating its deterioration. The hydrolysates obtained at different degrees of hydrolysis had a better solubility than the intact protein concentrate. The oil holding capacity, the foaming stability, and the least gelation concentration of the protein concentrate could not be considerably improved by hydrolysis. In contrast, its emulsifying activity index and foaming capacity could be increased with a limited degree of hydrolysis (up to 10%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Foods and Raw Materials
Foods and Raw Materials FOOD SCIENCE & TECHNOLOGY-
CiteScore
3.70
自引率
20.00%
发文量
39
审稿时长
24 weeks
期刊介绍: The journal «Foods and Raw Materials» is published from 2013. It is published in the English and German languages with periodicity of two volumes a year. The main concern of the journal «Foods and Raw Materials» is informing the scientific community on the works by the researchers from Russia and the CIS, strengthening the world position of the science they represent, showing the results of perspective scientific researches in the food industry and related branches. The main tasks of the Journal consist the publication of scientific research results and theoretical and experimental studies, carried out in the Russian and foreign organizations, as well as on the authors'' personal initiative; bringing together different categories of researchers, university and scientific intelligentsia; to create and maintain a common space of scientific communication, bridging the gap between the publications of regional, federal and international level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信