某些准分裂型修正$$\imath $$量子群的晶体基

Pub Date : 2023-06-14 DOI:10.1007/s10468-023-10207-z
Hideya Watanabe
{"title":"某些准分裂型修正$$\\imath $$量子群的晶体基","authors":"Hideya Watanabe","doi":"10.1007/s10468-023-10207-z","DOIUrl":null,"url":null,"abstract":"<div><p>In order to see the behavior of <span>\\(\\imath \\)</span>canonical bases at <span>\\(q = \\infty \\)</span>, we introduce the notion of <span>\\(\\imath \\)</span>crystals associated to an <span>\\(\\imath \\)</span>quantum group of certain quasi-split type. The theory of <span>\\(\\imath \\)</span>crystals clarifies why <span>\\(\\imath \\)</span>canonical basis elements are not always preserved under natural homomorphisms. Also, we construct a projective system of <span>\\(\\imath \\)</span>crystals whose projective limit can be thought of as the <span>\\(\\imath \\)</span>canonical basis of the modified <span>\\(\\imath \\)</span>quantum group at <span>\\(q = \\infty \\)</span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal Bases of Modified \\\\(\\\\imath \\\\)quantum Groups of Certain Quasi-Split Types\",\"authors\":\"Hideya Watanabe\",\"doi\":\"10.1007/s10468-023-10207-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to see the behavior of <span>\\\\(\\\\imath \\\\)</span>canonical bases at <span>\\\\(q = \\\\infty \\\\)</span>, we introduce the notion of <span>\\\\(\\\\imath \\\\)</span>crystals associated to an <span>\\\\(\\\\imath \\\\)</span>quantum group of certain quasi-split type. The theory of <span>\\\\(\\\\imath \\\\)</span>crystals clarifies why <span>\\\\(\\\\imath \\\\)</span>canonical basis elements are not always preserved under natural homomorphisms. Also, we construct a projective system of <span>\\\\(\\\\imath \\\\)</span>crystals whose projective limit can be thought of as the <span>\\\\(\\\\imath \\\\)</span>canonical basis of the modified <span>\\\\(\\\\imath \\\\)</span>quantum group at <span>\\\\(q = \\\\infty \\\\)</span>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-023-10207-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10207-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了看清在(q = \infty)处的(((imath))规范基的行为,我们引入了与((imath))量子群的某种准分裂类型相关联的((imath))晶体的概念。\(\imath\)晶体的理论阐明了为什么\(\imath\)规范基元在自然同态下并不总是保留的。同时,我们构造了一个投影系统的((imath)晶体),它的投影极限可以被认为是在(q = \infty \)处的修正量子群的((imath)规范基础)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Crystal Bases of Modified \(\imath \)quantum Groups of Certain Quasi-Split Types

In order to see the behavior of \(\imath \)canonical bases at \(q = \infty \), we introduce the notion of \(\imath \)crystals associated to an \(\imath \)quantum group of certain quasi-split type. The theory of \(\imath \)crystals clarifies why \(\imath \)canonical basis elements are not always preserved under natural homomorphisms. Also, we construct a projective system of \(\imath \)crystals whose projective limit can be thought of as the \(\imath \)canonical basis of the modified \(\imath \)quantum group at \(q = \infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信