{"title":"透过镜子:吸入毒理学和气道个体间变异的体外模型。","authors":"Samantha C. Faber, S. McCullough","doi":"10.1089/AIVT.2018.0002","DOIUrl":null,"url":null,"abstract":"With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.","PeriodicalId":37448,"journal":{"name":"Applied In Vitro Toxicology","volume":"4 2 1","pages":"115-128"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/AIVT.2018.0002","citationCount":"28","resultStr":"{\"title\":\"Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway.\",\"authors\":\"Samantha C. Faber, S. McCullough\",\"doi\":\"10.1089/AIVT.2018.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.\",\"PeriodicalId\":37448,\"journal\":{\"name\":\"Applied In Vitro Toxicology\",\"volume\":\"4 2 1\",\"pages\":\"115-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/AIVT.2018.0002\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied In Vitro Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/AIVT.2018.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied In Vitro Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/AIVT.2018.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
Through the Looking Glass: In Vitro Models for Inhalation Toxicology and Interindividual Variability in the Airway.
With 7 million deaths reported annually from air pollution alone, it is evident that adverse effects of inhaled toxicant exposures remain a major public health concern in the 21st century. Assessment and characterization of the impacts of air pollutants on human health stems from epidemiological and clinical studies, which have linked both outdoor and indoor air contaminant exposure to adverse pulmonary and cardiovascular health outcomes. Studies in animal models support epidemiological findings and have been critical in identifying systemic effects of environmental chemicals on cognitive abilities, liver disease, and metabolic dysfunction following inhalation exposure. Likewise, traditional monoculture systems have aided in identifying biomarkers of susceptibility to inhaled toxicants and served as a screening platform for safety assessment of pulmonary toxicants. Despite their contributions, in vivo and classic in vitro models have not been able to accurately represent the heterogeneity of the human population and account for interindividual variability in response to inhaled toxicants and susceptibility to the adverse health effects. Development of new technologies that can investigate genetic predisposition, are cost and time efficient, and are ethically sound, will enhance elucidation of mechanisms of inhalation toxicity, and aid in the development of novel pharmaceuticals and/or safety evaluation. This review will describe the classic and novel cell-based inhalation toxicity models and how these emerging technologies can be incorporated into regulatory or nonregulatory testing to address interindividual variability and improve overall human health.
期刊介绍:
Applied In Vitro Toxicology is a peer-reviewed journal providing the latest research on the application of alternative in vitro testing methods for predicting adverse effects in the pharmaceutical, chemical, and personal care industries. This Journal aims to address important issues facing the various chemical industries, including regulatory requirements; the reduction, refinement, and replacement of animal testing; new screening methods; evaluation of new cell and tissue models; and the most appropriate methods for assessing safety and satisfying regulatory demands. The Journal also delivers the latest views and opinions of developers of new models, end users of the models, academic laboratories that are inventing new tools, and regulatory agencies in the United States, Europe, Latin America, Australia and Asia. Applied In Vitro Toxicology is the journal that scientists involved with hazard identification and risk assessment will read to understand how new and existing in vitro methods are applied, and the questions for which these models provide answers. Applied In Vitro Toxicology coverage includes: -Applied in vitro toxicology industry standards -New technologies developed for applied in vitro toxicology -Data acquisition, cleaning, distribution, and best practices -Data protection, privacy, and policy -Business interests from research to product -The changing role of in vitro toxicology -Visualization and design principles of applied in vitro toxicology infrastructures -Physical interfaces and robotics -Opportunities around applied in vitro toxicology