全硫还原蒸馏法的现代应用-旧的又是新的

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
Gail L Arnold, Benjamin Brunner, Inigo A Müller, Hans Røy
{"title":"全硫还原蒸馏法的现代应用-旧的又是新的","authors":"Gail L Arnold,&nbsp;Benjamin Brunner,&nbsp;Inigo A Müller,&nbsp;Hans Røy","doi":"10.1186/1467-4866-15-4","DOIUrl":null,"url":null,"abstract":"<p>The use of a boiling mixture of hydriodic acid, hypophosphorous acid, and hydrochloric acid to reduce any variety of sulfur compounds has been in use in various applications since the first appearance of this method in the literature in the 1920’s. In the realm of sulfur geochemistry, this method remains a useful, but under-utilized technique. Presented here is a detailed description of the distillation set-up and procedure, as well as an overview of potential applications of this method for marine sulfur biogeochemistry/isotope studies. The presented applications include the sulfur isotope analysis of extremely low amounts of sulfate from saline water, the conversion of radiolabeled sulfate into sulfide, the extraction of refractory sulfur from marine sediments, and the use of this method to assess sulfur cycling in Aarhus Bay sediments.</p><p>The STrongly Reducing hydrIodic/hypoPhosphorous/hydrochloric acid (STRIP) reagent is capable of rapidly reducing a wide range of sulfur compounds, including the most oxidized form, sulfate, to hydrogen sulfide. Conversion of as little as approximately 5 micromole sulfate is possible, with a sulfur isotope composition reproducibility of 0.3 permil.</p><p>Although developed many decades ago, this distillation method remains relevant for many modern applications. The STRIP distillation quickly and quantitatively converts sulfur compounds to hydrogen sulfide which can be readily collected in a silver nitrate trap for further use. An application of this method to a study of sulfur cycling in Aarhus Bay demonstrates that we account for all of the sulfur compounds in pore-water, effectively closing the mass balance of sulfur cycling.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"15 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2014-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1467-4866-15-4","citationCount":"21","resultStr":"{\"title\":\"Modern applications for a total sulfur reduction distillation method - what’s old is new again\",\"authors\":\"Gail L Arnold,&nbsp;Benjamin Brunner,&nbsp;Inigo A Müller,&nbsp;Hans Røy\",\"doi\":\"10.1186/1467-4866-15-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The use of a boiling mixture of hydriodic acid, hypophosphorous acid, and hydrochloric acid to reduce any variety of sulfur compounds has been in use in various applications since the first appearance of this method in the literature in the 1920’s. In the realm of sulfur geochemistry, this method remains a useful, but under-utilized technique. Presented here is a detailed description of the distillation set-up and procedure, as well as an overview of potential applications of this method for marine sulfur biogeochemistry/isotope studies. The presented applications include the sulfur isotope analysis of extremely low amounts of sulfate from saline water, the conversion of radiolabeled sulfate into sulfide, the extraction of refractory sulfur from marine sediments, and the use of this method to assess sulfur cycling in Aarhus Bay sediments.</p><p>The STrongly Reducing hydrIodic/hypoPhosphorous/hydrochloric acid (STRIP) reagent is capable of rapidly reducing a wide range of sulfur compounds, including the most oxidized form, sulfate, to hydrogen sulfide. Conversion of as little as approximately 5 micromole sulfate is possible, with a sulfur isotope composition reproducibility of 0.3 permil.</p><p>Although developed many decades ago, this distillation method remains relevant for many modern applications. The STRIP distillation quickly and quantitatively converts sulfur compounds to hydrogen sulfide which can be readily collected in a silver nitrate trap for further use. An application of this method to a study of sulfur cycling in Aarhus Bay demonstrates that we account for all of the sulfur compounds in pore-water, effectively closing the mass balance of sulfur cycling.</p>\",\"PeriodicalId\":12694,\"journal\":{\"name\":\"Geochemical Transactions\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2014-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1467-4866-15-4\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemical Transactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/1467-4866-15-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/1467-4866-15-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 21

摘要

自20世纪20年代首次在文献中出现这种方法以来,使用氢酸、次磷酸和盐酸的沸腾混合物来减少任何种类的含硫化合物已被用于各种应用。在硫地球化学领域,这种方法仍然是一种有用的技术,但尚未得到充分利用。本文详细介绍了蒸馏装置和过程,并概述了该方法在海洋硫生物地球化学/同位素研究中的潜在应用。介绍的应用包括从盐水中极少量硫酸盐的硫同位素分析,放射性标记硫酸盐转化为硫化物,从海洋沉积物中提取难熔硫,以及使用该方法评估奥胡斯湾沉积物中的硫循环。强还原性氢/次磷/盐酸(STRIP)试剂能够快速还原多种含硫化合物,包括最氧化的形式,硫酸盐,为硫化氢。硫同位素组成的重现性为0.3 peril,可以转化约5微摩尔的硫酸盐。虽然开发了几十年前,这种蒸馏方法仍然适用于许多现代应用。STRIP蒸馏快速定量地将硫化合物转化为硫化氢,硫化氢可以很容易地收集在硝酸银捕集器中供进一步使用。该方法在奥胡斯湾硫循环研究中的应用表明,我们计算了孔隙水中所有的硫化合物,有效地关闭了硫循环的质量平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modern applications for a total sulfur reduction distillation method - what’s old is new again

Modern applications for a total sulfur reduction distillation method - what’s old is new again

The use of a boiling mixture of hydriodic acid, hypophosphorous acid, and hydrochloric acid to reduce any variety of sulfur compounds has been in use in various applications since the first appearance of this method in the literature in the 1920’s. In the realm of sulfur geochemistry, this method remains a useful, but under-utilized technique. Presented here is a detailed description of the distillation set-up and procedure, as well as an overview of potential applications of this method for marine sulfur biogeochemistry/isotope studies. The presented applications include the sulfur isotope analysis of extremely low amounts of sulfate from saline water, the conversion of radiolabeled sulfate into sulfide, the extraction of refractory sulfur from marine sediments, and the use of this method to assess sulfur cycling in Aarhus Bay sediments.

The STrongly Reducing hydrIodic/hypoPhosphorous/hydrochloric acid (STRIP) reagent is capable of rapidly reducing a wide range of sulfur compounds, including the most oxidized form, sulfate, to hydrogen sulfide. Conversion of as little as approximately 5 micromole sulfate is possible, with a sulfur isotope composition reproducibility of 0.3 permil.

Although developed many decades ago, this distillation method remains relevant for many modern applications. The STRIP distillation quickly and quantitatively converts sulfur compounds to hydrogen sulfide which can be readily collected in a silver nitrate trap for further use. An application of this method to a study of sulfur cycling in Aarhus Bay demonstrates that we account for all of the sulfur compounds in pore-water, effectively closing the mass balance of sulfur cycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemical Transactions
Geochemical Transactions 地学-地球化学与地球物理
CiteScore
3.70
自引率
4.30%
发文量
2
审稿时长
>12 weeks
期刊介绍: Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信