{"title":"输电线路建模中时间-分数电报方程的数值研究","authors":"Wang Kong, Zhongyi Huang","doi":"10.4208/eajam.070921.150222","DOIUrl":null,"url":null,"abstract":". The stability and uniqueness of the solutions of time-fractional telegraph equations arising in the transmission line modeling are proved. The corresponding initial-boundary problems are then solved by a finite difference scheme. It is shown that the scheme is unconditionally stable and convergent. Computational efficiency of the method can be enhanced by transforming it into two finite volume schemes for solving two uncoupled time-fractional convection equations. Numerical experiments validate the theoretical results and show the efficiency of this approach even for the problems the solutions which are not smooth at the initial moment.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Time-Fractional Telegraph Equations of Transmission Line Modeling\",\"authors\":\"Wang Kong, Zhongyi Huang\",\"doi\":\"10.4208/eajam.070921.150222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The stability and uniqueness of the solutions of time-fractional telegraph equations arising in the transmission line modeling are proved. The corresponding initial-boundary problems are then solved by a finite difference scheme. It is shown that the scheme is unconditionally stable and convergent. Computational efficiency of the method can be enhanced by transforming it into two finite volume schemes for solving two uncoupled time-fractional convection equations. Numerical experiments validate the theoretical results and show the efficiency of this approach even for the problems the solutions which are not smooth at the initial moment.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/eajam.070921.150222\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/eajam.070921.150222","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical Study of Time-Fractional Telegraph Equations of Transmission Line Modeling
. The stability and uniqueness of the solutions of time-fractional telegraph equations arising in the transmission line modeling are proved. The corresponding initial-boundary problems are then solved by a finite difference scheme. It is shown that the scheme is unconditionally stable and convergent. Computational efficiency of the method can be enhanced by transforming it into two finite volume schemes for solving two uncoupled time-fractional convection equations. Numerical experiments validate the theoretical results and show the efficiency of this approach even for the problems the solutions which are not smooth at the initial moment.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.