{"title":"用非弹性X射线散射测定Fe3C在高压高温下的声速","authors":"Suguru Takahashi , Eiji Ohtani , Tatsuya Sakamaki , Seiji Kamada , Hiroshi Fukui , Satoshi Tsutsui , Hiroshi Uchiyama , Daisuke Ishikawa , Naohisa Hirao , Yasuo Ohishi , Alfred Q.R. Baron","doi":"10.1016/j.crte.2018.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>The sound velocity of Fe<sub>3</sub>C was measured at pressures from 33 to 86<!--> <!-->GPa and at ambient and high temperatures up to 2300<!--> <!-->K using inelastic X-ray scattering (IXS) from laser-heated samples in diamond anvil cells (DACs). The compressional velocity (<em>V</em><sub>P</sub>) and density of Fe<sub>3</sub>C at room temperature were observed to follow a linear relationship (Birch's law). The temperature dependency of Birch's law was not clearly observed and can be ignored. Birch's law for Fe<sub>3</sub>C is expressed by: <span><math><mrow><msub><mi>V</mi><mtext>P</mtext></msub><mo>=</mo><mn>1.09</mn><mfenced><mrow><mo>±</mo><mn>0.14</mn></mrow></mfenced><mo>×</mo><mi>ρ</mi><mo>−</mo><mn>1.79</mn><mfenced><mrow><mo>±</mo><mn>1.26</mn></mrow></mfenced></mrow></math></span>. The result indicates that <em>V</em><sub>P</sub> and <em>V</em><sub>S</sub> (shear velocity) of the preliminary reference Earth model (PREM) inner core at the Inner Core Boundary (ICB) were by 12% and 48% smaller than those of Fe<sub>3</sub>C, which could be accounted for by the premelting effect by analogy from pure Fe or by partial melting of the Fe–Fe<sub>3</sub>C mixture in the inner core.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 190-196"},"PeriodicalIF":2.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.09.005","citationCount":"8","resultStr":"{\"title\":\"Sound velocity of Fe3C at high pressure and high temperature determined by inelastic X-ray scattering\",\"authors\":\"Suguru Takahashi , Eiji Ohtani , Tatsuya Sakamaki , Seiji Kamada , Hiroshi Fukui , Satoshi Tsutsui , Hiroshi Uchiyama , Daisuke Ishikawa , Naohisa Hirao , Yasuo Ohishi , Alfred Q.R. Baron\",\"doi\":\"10.1016/j.crte.2018.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sound velocity of Fe<sub>3</sub>C was measured at pressures from 33 to 86<!--> <!-->GPa and at ambient and high temperatures up to 2300<!--> <!-->K using inelastic X-ray scattering (IXS) from laser-heated samples in diamond anvil cells (DACs). The compressional velocity (<em>V</em><sub>P</sub>) and density of Fe<sub>3</sub>C at room temperature were observed to follow a linear relationship (Birch's law). The temperature dependency of Birch's law was not clearly observed and can be ignored. Birch's law for Fe<sub>3</sub>C is expressed by: <span><math><mrow><msub><mi>V</mi><mtext>P</mtext></msub><mo>=</mo><mn>1.09</mn><mfenced><mrow><mo>±</mo><mn>0.14</mn></mrow></mfenced><mo>×</mo><mi>ρ</mi><mo>−</mo><mn>1.79</mn><mfenced><mrow><mo>±</mo><mn>1.26</mn></mrow></mfenced></mrow></math></span>. The result indicates that <em>V</em><sub>P</sub> and <em>V</em><sub>S</sub> (shear velocity) of the preliminary reference Earth model (PREM) inner core at the Inner Core Boundary (ICB) were by 12% and 48% smaller than those of Fe<sub>3</sub>C, which could be accounted for by the premelting effect by analogy from pure Fe or by partial melting of the Fe–Fe<sub>3</sub>C mixture in the inner core.</p></div>\",\"PeriodicalId\":50651,\"journal\":{\"name\":\"Comptes Rendus Geoscience\",\"volume\":\"351 2\",\"pages\":\"Pages 190-196\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.crte.2018.09.005\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1631071318301275\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Geoscience","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631071318301275","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Sound velocity of Fe3C at high pressure and high temperature determined by inelastic X-ray scattering
The sound velocity of Fe3C was measured at pressures from 33 to 86 GPa and at ambient and high temperatures up to 2300 K using inelastic X-ray scattering (IXS) from laser-heated samples in diamond anvil cells (DACs). The compressional velocity (VP) and density of Fe3C at room temperature were observed to follow a linear relationship (Birch's law). The temperature dependency of Birch's law was not clearly observed and can be ignored. Birch's law for Fe3C is expressed by: . The result indicates that VP and VS (shear velocity) of the preliminary reference Earth model (PREM) inner core at the Inner Core Boundary (ICB) were by 12% and 48% smaller than those of Fe3C, which could be accounted for by the premelting effect by analogy from pure Fe or by partial melting of the Fe–Fe3C mixture in the inner core.
期刊介绍:
Created in 1835 by physicist François Arago, then Permanent Secretary, the journal Comptes Rendus de l''Académie des sciences allows researchers to quickly make their work known to the international scientific community.
It is divided into seven titles covering the range of scientific research fields: Mathematics, Mechanics, Chemistry, Biology, Geoscience, Physics and Palevol. Each series is led by an editor-in-chief assisted by an editorial committee. Submitted articles are reviewed by two scientists with recognized competence in the field concerned. They can be notes, announcing significant new results, as well as review articles, allowing for a fine-tuning, or even proceedings of symposia and other thematic issues, under the direction of invited editors, French or foreign.