地中海和中欧高山生境中几种淡水生物光合过程的比较研究

IF 0.5 Q4 ECOLOGY
G. Giudici, J. Hájek, M. Barták, S. Kubešová
{"title":"地中海和中欧高山生境中几种淡水生物光合过程的比较研究","authors":"G. Giudici, J. Hájek, M. Barták, S. Kubešová","doi":"10.5817/cpr2018-2-24","DOIUrl":null,"url":null,"abstract":"Dehydration-induced decrease in photosynthetic activity was investigated in five poikilohydric autotrophs using chlorophyll fluorescence parameters recorded during controlled desiccation. For the study, two representatives of mosses from alpine zone (Rhizomnium punctatum, Rhytidiadelphus squarrosus) of the Jeseníky Mts. (Czech Republic) were used. Other two experimental species were mediterranean habitats liverwort (Pellia endiviifolia) and moss (Palustriella commutata), collected from under Woodwardia radicans canopy in the Nature Reserve Valle delle Ferriere (Italy). The last species was a liverwort (Marchantia polymorpha) collected from lowland site (Brno, Moravia, Czech Republic). We investigated the relationship between relative water content (RWC) and several chlorophyll fluorescence parameters evaluating primary photochemical processes of photosynthesis, such as effective quantum yield of photosynthetic processes in photosystem II (ΦPSII), and non-photochemical quenching (qN). With desiccation from fully wet (RWC = 100%) to dry state (RWC = 0%), ΦPSII exhibited a rapid (R. punctatum) and slow decline of ΦPSII (R. squarrosus, P. endiviifolia, M. polymorpha, and P. commutata). Shapes of dehydration-response curves were species-specific. RWC0.5, i.e. the RWC at which the sample showed half of maximum ΦPSII, reflected the species-specificity. It reached 65% in desiccation sensitive (R. punctatum), 53% and 43% in semi-tolerant (P. commutata and R. squarrosus), 24% and 18% in desiccation-tolerant species (P. endiviifolia and M. polymorpha). In all experimental species, non-photochemical quenching (qN) of absorbed light energy showed high values at RWC = 100% and a slight increase with desiccation. Steady state chlorophyll fluorescence (FS) remained high during desiccation and was not correlated with ΦPSII.  ","PeriodicalId":37981,"journal":{"name":"Czech Polar Reports","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparative research of photosynthetic processes in selected poikilohydric organisms from Mediterranean and Central-European alpine habitats\",\"authors\":\"G. Giudici, J. Hájek, M. Barták, S. Kubešová\",\"doi\":\"10.5817/cpr2018-2-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dehydration-induced decrease in photosynthetic activity was investigated in five poikilohydric autotrophs using chlorophyll fluorescence parameters recorded during controlled desiccation. For the study, two representatives of mosses from alpine zone (Rhizomnium punctatum, Rhytidiadelphus squarrosus) of the Jeseníky Mts. (Czech Republic) were used. Other two experimental species were mediterranean habitats liverwort (Pellia endiviifolia) and moss (Palustriella commutata), collected from under Woodwardia radicans canopy in the Nature Reserve Valle delle Ferriere (Italy). The last species was a liverwort (Marchantia polymorpha) collected from lowland site (Brno, Moravia, Czech Republic). We investigated the relationship between relative water content (RWC) and several chlorophyll fluorescence parameters evaluating primary photochemical processes of photosynthesis, such as effective quantum yield of photosynthetic processes in photosystem II (ΦPSII), and non-photochemical quenching (qN). With desiccation from fully wet (RWC = 100%) to dry state (RWC = 0%), ΦPSII exhibited a rapid (R. punctatum) and slow decline of ΦPSII (R. squarrosus, P. endiviifolia, M. polymorpha, and P. commutata). Shapes of dehydration-response curves were species-specific. RWC0.5, i.e. the RWC at which the sample showed half of maximum ΦPSII, reflected the species-specificity. It reached 65% in desiccation sensitive (R. punctatum), 53% and 43% in semi-tolerant (P. commutata and R. squarrosus), 24% and 18% in desiccation-tolerant species (P. endiviifolia and M. polymorpha). In all experimental species, non-photochemical quenching (qN) of absorbed light energy showed high values at RWC = 100% and a slight increase with desiccation. Steady state chlorophyll fluorescence (FS) remained high during desiccation and was not correlated with ΦPSII.  \",\"PeriodicalId\":37981,\"journal\":{\"name\":\"Czech Polar Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Czech Polar Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/cpr2018-2-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czech Polar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/cpr2018-2-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

利用控制干燥过程中记录的叶绿素荧光参数,研究了五种淡水自养生物因脱水而导致的光合活性下降。在这项研究中,使用了来自Jeseníky Mts(捷克共和国)高山地带的两种代表性苔藓(Rhytidiadelphus squarosus)。另外两个实验物种是地中海栖息地的苔草(Pellia endivifolia)和苔藓(Palustriella commuta),它们是从自然保护区Valle delle Ferriere(意大利)的Woodardia radicans树冠下采集的。最后一个物种是从低地(布尔诺,摩拉维亚,捷克共和国)采集的苔草(Marchantia polymorpha)。我们研究了相对含水量(RWC)与评价光合作用初级光化学过程的几个叶绿素荧光参数之间的关系,如光系统II中光合过程的有效量子产量(ΦPSII)和非光化学猝灭(qN)。随着从完全湿润(RWC=100%)到干燥状态(RWC=0%)的干燥,ΦPSII表现出快速(R.punctatum)和缓慢下降(R.squarosus、P.endivifolia、M.polymorpha和P.commuta)。脱水反应曲线的形状是物种特异性的。RWC0.5,即样本显示最大ΦPSII一半的RWC,反映了物种特异性。在干燥敏感种(R.punctatum)中达到65%,在半耐种(P.commuta和R.squarosus)中分别达到53%和43%,在耐干燥种(P.endivifolia和M.polymorpha)中达到24%和18%。在所有实验物种中,在RWC=100%时,吸收光能的非光化学猝灭(qN)显示出较高的值,并且随着干燥而略有增加。稳态叶绿素荧光(FS)在干燥过程中保持较高水平,与ΦPSII无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative research of photosynthetic processes in selected poikilohydric organisms from Mediterranean and Central-European alpine habitats
Dehydration-induced decrease in photosynthetic activity was investigated in five poikilohydric autotrophs using chlorophyll fluorescence parameters recorded during controlled desiccation. For the study, two representatives of mosses from alpine zone (Rhizomnium punctatum, Rhytidiadelphus squarrosus) of the Jeseníky Mts. (Czech Republic) were used. Other two experimental species were mediterranean habitats liverwort (Pellia endiviifolia) and moss (Palustriella commutata), collected from under Woodwardia radicans canopy in the Nature Reserve Valle delle Ferriere (Italy). The last species was a liverwort (Marchantia polymorpha) collected from lowland site (Brno, Moravia, Czech Republic). We investigated the relationship between relative water content (RWC) and several chlorophyll fluorescence parameters evaluating primary photochemical processes of photosynthesis, such as effective quantum yield of photosynthetic processes in photosystem II (ΦPSII), and non-photochemical quenching (qN). With desiccation from fully wet (RWC = 100%) to dry state (RWC = 0%), ΦPSII exhibited a rapid (R. punctatum) and slow decline of ΦPSII (R. squarrosus, P. endiviifolia, M. polymorpha, and P. commutata). Shapes of dehydration-response curves were species-specific. RWC0.5, i.e. the RWC at which the sample showed half of maximum ΦPSII, reflected the species-specificity. It reached 65% in desiccation sensitive (R. punctatum), 53% and 43% in semi-tolerant (P. commutata and R. squarrosus), 24% and 18% in desiccation-tolerant species (P. endiviifolia and M. polymorpha). In all experimental species, non-photochemical quenching (qN) of absorbed light energy showed high values at RWC = 100% and a slight increase with desiccation. Steady state chlorophyll fluorescence (FS) remained high during desiccation and was not correlated with ΦPSII.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Czech Polar Reports
Czech Polar Reports Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
1.30
自引率
10.00%
发文量
22
期刊介绍: Czech Polar Reports is an international, multidisciplinary, peer-reviewed journal. It is issued 2 times a year. The journal is dedicated to provide original research papers for sciences related to the polar regions and other planets with polar analogues. Czech Polar Reports covers the disciplines listed below. polar paleontology, geology, geochemistry, geomorphology, glaciology, climatology, hydrology, pedology, biochemistry, ecology, environmental science, microbiology, plant and animal biology including marine biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信