归一化切丛、具有小余度和伪有效阈值的变种

IF 1.1 2区 数学 Q1 MATHEMATICS
Baohua Fu, Jie Liu
{"title":"归一化切丛、具有小余度和伪有效阈值的变种","authors":"Baohua Fu, Jie Liu","doi":"10.1017/s1474748022000366","DOIUrl":null,"url":null,"abstract":"\n We propose a conjectural list of Fano manifolds of Picard number \n \n \n \n$1$\n\n \n with pseudoeffective normalised tangent bundles, which we prove in various situations by relating it to the complete divisibility conjecture of Francesco Russo and Fyodor L. Zak on varieties with small codegree. Furthermore, the pseudoeffective thresholds and, hence, the pseudoeffective cones of the projectivised tangent bundles of rational homogeneous spaces of Picard number \n \n \n \n$1$\n\n \n are explicitly determined by studying the total dual variety of minimal rational tangents (VMRTs) and the geometry of stratified Mukai flops. As a by-product, we obtain sharp vanishing theorems on the global twisted symmetric holomorphic vector fields on rational homogeneous spaces of Picard number \n \n \n \n$1$\n\n \n .","PeriodicalId":50002,"journal":{"name":"Journal of the Institute of Mathematics of Jussieu","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"NORMALISED TANGENT BUNDLE, VARIETIES WITH SMALL CODEGREE AND PSEUDOEFFECTIVE THRESHOLD\",\"authors\":\"Baohua Fu, Jie Liu\",\"doi\":\"10.1017/s1474748022000366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose a conjectural list of Fano manifolds of Picard number \\n \\n \\n \\n$1$\\n\\n \\n with pseudoeffective normalised tangent bundles, which we prove in various situations by relating it to the complete divisibility conjecture of Francesco Russo and Fyodor L. Zak on varieties with small codegree. Furthermore, the pseudoeffective thresholds and, hence, the pseudoeffective cones of the projectivised tangent bundles of rational homogeneous spaces of Picard number \\n \\n \\n \\n$1$\\n\\n \\n are explicitly determined by studying the total dual variety of minimal rational tangents (VMRTs) and the geometry of stratified Mukai flops. As a by-product, we obtain sharp vanishing theorems on the global twisted symmetric holomorphic vector fields on rational homogeneous spaces of Picard number \\n \\n \\n \\n$1$\\n\\n \\n .\",\"PeriodicalId\":50002,\"journal\":{\"name\":\"Journal of the Institute of Mathematics of Jussieu\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Institute of Mathematics of Jussieu\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1474748022000366\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Institute of Mathematics of Jussieu","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1474748022000366","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一个具有伪有效归一化切丛的Picard数为$1$的Fano流形的猜想列表,我们通过将其与Francesco Russo和Fyodor L.Zak关于小码度变种的完全可分性猜想联系起来,在各种情况下证明了这一猜想列表。此外,通过研究最小有理切线的全对偶变化(VMRT)和分层Mukai flop的几何,明确地确定了Picard数为$1$的有理齐次空间的投影切丛的伪有效阈值,从而确定了伪有效锥。作为副产品,我们得到了Picard数$1$的有理齐次空间上全局扭曲对称全纯向量场的尖锐消失定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NORMALISED TANGENT BUNDLE, VARIETIES WITH SMALL CODEGREE AND PSEUDOEFFECTIVE THRESHOLD
We propose a conjectural list of Fano manifolds of Picard number $1$ with pseudoeffective normalised tangent bundles, which we prove in various situations by relating it to the complete divisibility conjecture of Francesco Russo and Fyodor L. Zak on varieties with small codegree. Furthermore, the pseudoeffective thresholds and, hence, the pseudoeffective cones of the projectivised tangent bundles of rational homogeneous spaces of Picard number $1$ are explicitly determined by studying the total dual variety of minimal rational tangents (VMRTs) and the geometry of stratified Mukai flops. As a by-product, we obtain sharp vanishing theorems on the global twisted symmetric holomorphic vector fields on rational homogeneous spaces of Picard number $1$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
54
审稿时长
>12 weeks
期刊介绍: The Journal of the Institute of Mathematics of Jussieu publishes original research papers in any branch of pure mathematics; papers in logic and applied mathematics will also be considered, particularly when they have direct connections with pure mathematics. Its policy is to feature a wide variety of research areas and it welcomes the submission of papers from all parts of the world. Selection for publication is on the basis of reports from specialist referees commissioned by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信