Manuel Méndez-Gómez, E. Castro-Mercado, E. García-Pineda
{"title":"巴西氮螺旋菌通过雷帕霉素蛋白的靶点刺激拟南芥的生长","authors":"Manuel Méndez-Gómez, E. Castro-Mercado, E. García-Pineda","doi":"10.29267/mxjb.2021.6.4.1","DOIUrl":null,"url":null,"abstract":"Azospirillum spp., one of the best studied genus of plant growth promoting rhizobacteria. These rhizobacteria are able to colonize hundreds of plant species and improve their growth, development and productivity. The target of rapamycin (TOR) protein is a central component of the TOR signaling pathway, which regulates cell growth and metabolism in response to environment cues in eukaryotes. In this study, the TOR function was analyzed in Arabidopsis thaliana L. plants inoculated with the rhizobacteria Azospirillum brasilense. Arabidopsis seedlings tor-es, which express an interference RNA in presence of estradiol and decrease TOR expression, showed an inhibition in the growth and lateral root formation, with or without 1x102 CFU/mL of the inoculum. In addition, a morphological analysis of the root showed an inhibition in the root hair formation. The results suggest that A. brasilense controls A. thaliana growth through TOR signaling pathway.","PeriodicalId":36479,"journal":{"name":"Mexican Journal of Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Azospirillum brasilense stimulate the growth in Arabidopsis thaliana through the target of rapamycin protein\",\"authors\":\"Manuel Méndez-Gómez, E. Castro-Mercado, E. García-Pineda\",\"doi\":\"10.29267/mxjb.2021.6.4.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Azospirillum spp., one of the best studied genus of plant growth promoting rhizobacteria. These rhizobacteria are able to colonize hundreds of plant species and improve their growth, development and productivity. The target of rapamycin (TOR) protein is a central component of the TOR signaling pathway, which regulates cell growth and metabolism in response to environment cues in eukaryotes. In this study, the TOR function was analyzed in Arabidopsis thaliana L. plants inoculated with the rhizobacteria Azospirillum brasilense. Arabidopsis seedlings tor-es, which express an interference RNA in presence of estradiol and decrease TOR expression, showed an inhibition in the growth and lateral root formation, with or without 1x102 CFU/mL of the inoculum. In addition, a morphological analysis of the root showed an inhibition in the root hair formation. The results suggest that A. brasilense controls A. thaliana growth through TOR signaling pathway.\",\"PeriodicalId\":36479,\"journal\":{\"name\":\"Mexican Journal of Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mexican Journal of Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29267/mxjb.2021.6.4.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mexican Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29267/mxjb.2021.6.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Azospirillum brasilense stimulate the growth in Arabidopsis thaliana through the target of rapamycin protein
Azospirillum spp., one of the best studied genus of plant growth promoting rhizobacteria. These rhizobacteria are able to colonize hundreds of plant species and improve their growth, development and productivity. The target of rapamycin (TOR) protein is a central component of the TOR signaling pathway, which regulates cell growth and metabolism in response to environment cues in eukaryotes. In this study, the TOR function was analyzed in Arabidopsis thaliana L. plants inoculated with the rhizobacteria Azospirillum brasilense. Arabidopsis seedlings tor-es, which express an interference RNA in presence of estradiol and decrease TOR expression, showed an inhibition in the growth and lateral root formation, with or without 1x102 CFU/mL of the inoculum. In addition, a morphological analysis of the root showed an inhibition in the root hair formation. The results suggest that A. brasilense controls A. thaliana growth through TOR signaling pathway.