{"title":"高效溶剂抑制与绝热反演的1h检测固态核磁共振","authors":"Tatsuya Matsunaga, Ryotaro Okabe, Yoshitaka Ishii","doi":"10.1007/s10858-021-00384-8","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a conceptually new solvent suppression scheme with adiabatic inversion pulses for <sup>1</sup>H-detected multidimensional solid-state NMR (SSNMR) of biomolecules and other systems, which is termed “Solvent suppression of Liquid signal with Adiabatic Pulse” (SLAP). <sup>1</sup>H-detected 2D <sup>13</sup>C/<sup>1</sup>H SSNMR data of uniformly <sup>13</sup>C- and <sup>15</sup>N-labeled GB1 sample using ultra-fast magic angle spinning at a spinning rate of 60 kHz demonstrated that the SLAP scheme showed up to 3.5-fold better solvent suppression performance over a traditional solvent-suppression scheme for SSNMR, MISSISSIPPI (Zhou and Rienstra, J Magn Reson 192:167–172, 2008) with 2/3 of the average RF power.</p></div>","PeriodicalId":613,"journal":{"name":"Journal of Biomolecular NMR","volume":"75 10-12","pages":"365 - 370"},"PeriodicalIF":1.3000,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient solvent suppression with adiabatic inversion for 1H-detected solid-state NMR\",\"authors\":\"Tatsuya Matsunaga, Ryotaro Okabe, Yoshitaka Ishii\",\"doi\":\"10.1007/s10858-021-00384-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study introduces a conceptually new solvent suppression scheme with adiabatic inversion pulses for <sup>1</sup>H-detected multidimensional solid-state NMR (SSNMR) of biomolecules and other systems, which is termed “Solvent suppression of Liquid signal with Adiabatic Pulse” (SLAP). <sup>1</sup>H-detected 2D <sup>13</sup>C/<sup>1</sup>H SSNMR data of uniformly <sup>13</sup>C- and <sup>15</sup>N-labeled GB1 sample using ultra-fast magic angle spinning at a spinning rate of 60 kHz demonstrated that the SLAP scheme showed up to 3.5-fold better solvent suppression performance over a traditional solvent-suppression scheme for SSNMR, MISSISSIPPI (Zhou and Rienstra, J Magn Reson 192:167–172, 2008) with 2/3 of the average RF power.</p></div>\",\"PeriodicalId\":613,\"journal\":{\"name\":\"Journal of Biomolecular NMR\",\"volume\":\"75 10-12\",\"pages\":\"365 - 370\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomolecular NMR\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10858-021-00384-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular NMR","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-021-00384-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Efficient solvent suppression with adiabatic inversion for 1H-detected solid-state NMR
This study introduces a conceptually new solvent suppression scheme with adiabatic inversion pulses for 1H-detected multidimensional solid-state NMR (SSNMR) of biomolecules and other systems, which is termed “Solvent suppression of Liquid signal with Adiabatic Pulse” (SLAP). 1H-detected 2D 13C/1H SSNMR data of uniformly 13C- and 15N-labeled GB1 sample using ultra-fast magic angle spinning at a spinning rate of 60 kHz demonstrated that the SLAP scheme showed up to 3.5-fold better solvent suppression performance over a traditional solvent-suppression scheme for SSNMR, MISSISSIPPI (Zhou and Rienstra, J Magn Reson 192:167–172, 2008) with 2/3 of the average RF power.
期刊介绍:
The Journal of Biomolecular NMR provides a forum for publishing research on technical developments and innovative applications of nuclear magnetic resonance spectroscopy for the study of structure and dynamic properties of biopolymers in solution, liquid crystals, solids and mixed environments, e.g., attached to membranes. This may include:
Three-dimensional structure determination of biological macromolecules (polypeptides/proteins, DNA, RNA, oligosaccharides) by NMR.
New NMR techniques for studies of biological macromolecules.
Novel approaches to computer-aided automated analysis of multidimensional NMR spectra.
Computational methods for the structural interpretation of NMR data, including structure refinement.
Comparisons of structures determined by NMR with those obtained by other methods, e.g. by diffraction techniques with protein single crystals.
New techniques of sample preparation for NMR experiments (biosynthetic and chemical methods for isotope labeling, preparation of nutrients for biosynthetic isotope labeling, etc.). An NMR characterization of the products must be included.