Yifan Chai, Wen-ting Hu, G. Luo, Xing Gao, Junjie Wang, Jinzhou Liu
{"title":"高钙烟煤在高炉喷煤粉过程中的熔灰行为及机理","authors":"Yifan Chai, Wen-ting Hu, G. Luo, Xing Gao, Junjie Wang, Jinzhou Liu","doi":"10.1515/htmp-2022-0044","DOIUrl":null,"url":null,"abstract":"Abstract High-calcium bituminous coal has the advantages on combustibility, but its ash melting point is low, and it is easy to slag in blast furnace injection process. In order to explore the ash melting slag formation mechanism of high-calcium bituminous coal, the mineral evolution of ash in the combustion process of high-calcium bituminous coal and the influence of ash components on the liquid formation in the melting process were studied. The results showed that the melting behavior of ash gradually occurs with the change in the morphology, and the main mineral transformation is carried out around different deposition forms of Ca and Si. The liquid phase formation of ash at high temperature is the essential reason of its melting behavior. The higher the content of CaO, the higher the starting temperature of the liquid phase formation. The higher the content of SiO2, the lower the starting temperature of the liquid phase formation, and the more the liquid phases generated at a given temperature. Increasing the content of Al2O3 can expand the temperature range of reducing the formation of ash liquid phase to 1,473–1,673 K. When the temperature is above 1,573 K, Fe2O3 can promote ash liquid phase formation.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ash melting behavior and mechanism of high-calcium bituminous coal in the process of blast furnace pulverized coal injection\",\"authors\":\"Yifan Chai, Wen-ting Hu, G. Luo, Xing Gao, Junjie Wang, Jinzhou Liu\",\"doi\":\"10.1515/htmp-2022-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract High-calcium bituminous coal has the advantages on combustibility, but its ash melting point is low, and it is easy to slag in blast furnace injection process. In order to explore the ash melting slag formation mechanism of high-calcium bituminous coal, the mineral evolution of ash in the combustion process of high-calcium bituminous coal and the influence of ash components on the liquid formation in the melting process were studied. The results showed that the melting behavior of ash gradually occurs with the change in the morphology, and the main mineral transformation is carried out around different deposition forms of Ca and Si. The liquid phase formation of ash at high temperature is the essential reason of its melting behavior. The higher the content of CaO, the higher the starting temperature of the liquid phase formation. The higher the content of SiO2, the lower the starting temperature of the liquid phase formation, and the more the liquid phases generated at a given temperature. Increasing the content of Al2O3 can expand the temperature range of reducing the formation of ash liquid phase to 1,473–1,673 K. When the temperature is above 1,573 K, Fe2O3 can promote ash liquid phase formation.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0044\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0044","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ash melting behavior and mechanism of high-calcium bituminous coal in the process of blast furnace pulverized coal injection
Abstract High-calcium bituminous coal has the advantages on combustibility, but its ash melting point is low, and it is easy to slag in blast furnace injection process. In order to explore the ash melting slag formation mechanism of high-calcium bituminous coal, the mineral evolution of ash in the combustion process of high-calcium bituminous coal and the influence of ash components on the liquid formation in the melting process were studied. The results showed that the melting behavior of ash gradually occurs with the change in the morphology, and the main mineral transformation is carried out around different deposition forms of Ca and Si. The liquid phase formation of ash at high temperature is the essential reason of its melting behavior. The higher the content of CaO, the higher the starting temperature of the liquid phase formation. The higher the content of SiO2, the lower the starting temperature of the liquid phase formation, and the more the liquid phases generated at a given temperature. Increasing the content of Al2O3 can expand the temperature range of reducing the formation of ash liquid phase to 1,473–1,673 K. When the temperature is above 1,573 K, Fe2O3 can promote ash liquid phase formation.
期刊介绍:
High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities.
Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.