{"title":"Erdős原始集猜想的证明","authors":"J. Lichtman","doi":"10.1017/fmp.2023.16","DOIUrl":null,"url":null,"abstract":"Abstract A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series \n$f(A) = \\sum _{a\\in A}1/(a \\log a)$\n is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative. As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A proof of the Erdős primitive set conjecture\",\"authors\":\"J. Lichtman\",\"doi\":\"10.1017/fmp.2023.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series \\n$f(A) = \\\\sum _{a\\\\in A}1/(a \\\\log a)$\\n is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative. As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.16\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.16","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series
$f(A) = \sum _{a\in A}1/(a \log a)$
is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative. As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.
期刊介绍:
Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality.
Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.