Erdős原始集猜想的证明

IF 2.8 1区 数学 Q1 MATHEMATICS
J. Lichtman
{"title":"Erdős原始集猜想的证明","authors":"J. Lichtman","doi":"10.1017/fmp.2023.16","DOIUrl":null,"url":null,"abstract":"Abstract A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series \n$f(A) = \\sum _{a\\in A}1/(a \\log a)$\n is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative. As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A proof of the Erdős primitive set conjecture\",\"authors\":\"J. Lichtman\",\"doi\":\"10.1017/fmp.2023.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series \\n$f(A) = \\\\sum _{a\\\\in A}1/(a \\\\log a)$\\n is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative. As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.\",\"PeriodicalId\":56024,\"journal\":{\"name\":\"Forum of Mathematics Pi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Pi\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fmp.2023.16\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fmp.2023.16","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

大于1的整数集合是原始的,如果集合中没有能整除另一个整数的元素。Erdős在1935年证明了级数$f(A) = \sum _{a\in A}1/(a \log a)$在所有原始集合a的选择上是一致有界的。1986年,他问质数集合是否能得到这个界。在本文中,我们的回答是肯定的。作为该方法的进一步应用,我们在求解Erdős、Sárközy和1968年以来的szemersamedi问题方面取得了进展。并对无限可分链上的经典Davenport-Erdős定理进行了改进,推广了Erdős、Sárközy和szemer的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proof of the Erdős primitive set conjecture
Abstract A set of integers greater than 1 is primitive if no member in the set divides another. Erdős proved in 1935 that the series $f(A) = \sum _{a\in A}1/(a \log a)$ is uniformly bounded over all choices of primitive sets A. In 1986, he asked if this bound is attained for the set of prime numbers. In this article, we answer in the affirmative. As further applications of the method, we make progress towards a question of Erdős, Sárközy and Szemerédi from 1968. We also refine the classical Davenport–Erdős theorem on infinite divisibility chains, and extend a result of Erdős, Sárközy and Szemerédi from 1966.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信