{"title":"听力正常的耳鸣患者的扩展高频听阈","authors":"L. Ristovska, Z. Jachova","doi":"10.24425/aoa.2022.142897","DOIUrl":null,"url":null,"abstract":"The aim of the study was to compare the extended high-frequency (EHF) hearing thresholds (10–16 kHz) in tinnitus and non-tinnitus ears, in a group of 98 patients with unilateral tinnitus and normal hearing at standard audiometric frequencies, in a 0.125–8 kHz range. It was found that a total of 65 patients (66%) had a hearing loss (a threshold shift > 20 dB HL) in the EHF range and the EHF hearing loss occurred more frequently in the tinnitus ear than in the non-tinnitus ear. The data also indicate that the EHF thresholds increased with the patient’s age and were in most patients higher in the tinnitus ear than in the non-tinnitus ear.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended high frequency hearing thresholds in tinnitus patients with normal hearing\",\"authors\":\"L. Ristovska, Z. Jachova\",\"doi\":\"10.24425/aoa.2022.142897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the study was to compare the extended high-frequency (EHF) hearing thresholds (10–16 kHz) in tinnitus and non-tinnitus ears, in a group of 98 patients with unilateral tinnitus and normal hearing at standard audiometric frequencies, in a 0.125–8 kHz range. It was found that a total of 65 patients (66%) had a hearing loss (a threshold shift > 20 dB HL) in the EHF range and the EHF hearing loss occurred more frequently in the tinnitus ear than in the non-tinnitus ear. The data also indicate that the EHF thresholds increased with the patient’s age and were in most patients higher in the tinnitus ear than in the non-tinnitus ear.\",\"PeriodicalId\":8149,\"journal\":{\"name\":\"Archives of Acoustics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.24425/aoa.2022.142897\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.24425/aoa.2022.142897","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
摘要
该研究的目的是比较耳鸣和非耳鸣耳朵的扩展高频(EHF)听力阈值(10-16 kHz),在一组98例单侧耳鸣患者和听力正常的标准听力频率,在0.125-8 kHz范围内。结果发现,共有65例患者(66%)出现EHF范围内的听力损失(阈值移位bbb20 dB HL),耳鸣耳的EHF听力损失发生率高于非耳鸣耳。数据还表明,EHF阈值随着患者年龄的增长而增加,大多数耳鸣患者的EHF阈值高于非耳鸣患者。
Extended high frequency hearing thresholds in tinnitus patients with normal hearing
The aim of the study was to compare the extended high-frequency (EHF) hearing thresholds (10–16 kHz) in tinnitus and non-tinnitus ears, in a group of 98 patients with unilateral tinnitus and normal hearing at standard audiometric frequencies, in a 0.125–8 kHz range. It was found that a total of 65 patients (66%) had a hearing loss (a threshold shift > 20 dB HL) in the EHF range and the EHF hearing loss occurred more frequently in the tinnitus ear than in the non-tinnitus ear. The data also indicate that the EHF thresholds increased with the patient’s age and were in most patients higher in the tinnitus ear than in the non-tinnitus ear.
期刊介绍:
Archives of Acoustics, the peer-reviewed quarterly journal publishes original research papers from all areas of acoustics like:
acoustical measurements and instrumentation,
acoustics of musics,
acousto-optics,
architectural, building and environmental acoustics,
bioacoustics,
electroacoustics,
linear and nonlinear acoustics,
noise and vibration,
physical and chemical effects of sound,
physiological acoustics,
psychoacoustics,
quantum acoustics,
speech processing and communication systems,
speech production and perception,
transducers,
ultrasonics,
underwater acoustics.