Banglu Xi, Mingjing Jiang, Pinqiang Mo, Xiaoxian Liu, Jiaqiang Yang
{"title":"不同加载板作用下模拟月壤承载特性的三维DEM分析","authors":"Banglu Xi, Mingjing Jiang, Pinqiang Mo, Xiaoxian Liu, Jiaqiang Yang","doi":"10.1007/s10035-023-01355-6","DOIUrl":null,"url":null,"abstract":"<div><p>The foundation of a lunar habitation may be either smooth or rough with different shapes in the light that various concepts of the lunar base have been proposed, which require a good understanding of the bearing behavior of the lunar soil under plates with different shapes and roughness. Therefore, the three-dimensional distinct element method (3D DEM) is employed here to perform plate load tests on lunar soil simulant using the force-driven method. The soil failure mechanism under different plates is first described at various scales with detailed DEM studies of the load-settlement curve, stress path, ground heave, void ratio changes, and normalized-velocity field. Following these, the shape factor and coefficient of plate roughness are discussed by comparing the DEM and theoretical results. The results show that a typical general failure model can be identified for the strip plate, a local failure model for the circular and square plates, and a Hill model for the smooth plate from the ground heave, void ratio changes, and normalized velocity field. The shape factors for bearing capacity determined by the settlement criterion are close to those by the Terzaghi method with an error of nearly 10%, and the shape factors for the deformation modulus are similar to those in Chinese standard with an error of nearly 20%. In addition, the coefficient of plate roughness for the semi-rough plate is close to those predicted by the Meyerhof and Kumar methods with an error of nearly 5%.</p></div>","PeriodicalId":582,"journal":{"name":"Granular Matter","volume":"25 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D DEM analysis of the bearing behavior of lunar soil simulant under different loading plates\",\"authors\":\"Banglu Xi, Mingjing Jiang, Pinqiang Mo, Xiaoxian Liu, Jiaqiang Yang\",\"doi\":\"10.1007/s10035-023-01355-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The foundation of a lunar habitation may be either smooth or rough with different shapes in the light that various concepts of the lunar base have been proposed, which require a good understanding of the bearing behavior of the lunar soil under plates with different shapes and roughness. Therefore, the three-dimensional distinct element method (3D DEM) is employed here to perform plate load tests on lunar soil simulant using the force-driven method. The soil failure mechanism under different plates is first described at various scales with detailed DEM studies of the load-settlement curve, stress path, ground heave, void ratio changes, and normalized-velocity field. Following these, the shape factor and coefficient of plate roughness are discussed by comparing the DEM and theoretical results. The results show that a typical general failure model can be identified for the strip plate, a local failure model for the circular and square plates, and a Hill model for the smooth plate from the ground heave, void ratio changes, and normalized velocity field. The shape factors for bearing capacity determined by the settlement criterion are close to those by the Terzaghi method with an error of nearly 10%, and the shape factors for the deformation modulus are similar to those in Chinese standard with an error of nearly 20%. In addition, the coefficient of plate roughness for the semi-rough plate is close to those predicted by the Meyerhof and Kumar methods with an error of nearly 5%.</p></div>\",\"PeriodicalId\":582,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-023-01355-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01355-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
3D DEM analysis of the bearing behavior of lunar soil simulant under different loading plates
The foundation of a lunar habitation may be either smooth or rough with different shapes in the light that various concepts of the lunar base have been proposed, which require a good understanding of the bearing behavior of the lunar soil under plates with different shapes and roughness. Therefore, the three-dimensional distinct element method (3D DEM) is employed here to perform plate load tests on lunar soil simulant using the force-driven method. The soil failure mechanism under different plates is first described at various scales with detailed DEM studies of the load-settlement curve, stress path, ground heave, void ratio changes, and normalized-velocity field. Following these, the shape factor and coefficient of plate roughness are discussed by comparing the DEM and theoretical results. The results show that a typical general failure model can be identified for the strip plate, a local failure model for the circular and square plates, and a Hill model for the smooth plate from the ground heave, void ratio changes, and normalized velocity field. The shape factors for bearing capacity determined by the settlement criterion are close to those by the Terzaghi method with an error of nearly 10%, and the shape factors for the deformation modulus are similar to those in Chinese standard with an error of nearly 20%. In addition, the coefficient of plate roughness for the semi-rough plate is close to those predicted by the Meyerhof and Kumar methods with an error of nearly 5%.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.