表征支持人工智能的医疗设备中的传感器精度要求

Kristin A. Bartlett, Katharine E. Forth, Stefan I. Madansingh
{"title":"表征支持人工智能的医疗设备中的传感器精度要求","authors":"Kristin A. Bartlett,&nbsp;Katharine E. Forth,&nbsp;Stefan I. Madansingh","doi":"10.1016/j.ipemt.2022.100004","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence and machine learning applications are increasingly prevalent in the healthcare industry. In some cases, medical devices use sensor-collected data to feed into algorithms which generate scores or risk assessments that are used to inform patient care. The process of determining sensor accuracy requirements which will ensure that the algorithm generates reliable scores is not straightforward or well-defined. In this paper, we describe a simulation-based method to characterize sensor accuracy requirements for a device that uses a machine-learning algorithm to generate a postural stability score – the ZIBRIO Stability Scale. The results of the simulation are described, as is the application to sensor selection in preparation for manufacturing of the device. Other medical device developers may be able to use this method or similar methods in their requirements engineering process.</p></div>","PeriodicalId":73507,"journal":{"name":"IPEM-translation","volume":"1 ","pages":"Article 100004"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667258822000024/pdfft?md5=1060943e90dad53c7031b747d051df78&pid=1-s2.0-S2667258822000024-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing sensor accuracy requirements in an artificial intelligence-enabled medical device\",\"authors\":\"Kristin A. Bartlett,&nbsp;Katharine E. Forth,&nbsp;Stefan I. Madansingh\",\"doi\":\"10.1016/j.ipemt.2022.100004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial intelligence and machine learning applications are increasingly prevalent in the healthcare industry. In some cases, medical devices use sensor-collected data to feed into algorithms which generate scores or risk assessments that are used to inform patient care. The process of determining sensor accuracy requirements which will ensure that the algorithm generates reliable scores is not straightforward or well-defined. In this paper, we describe a simulation-based method to characterize sensor accuracy requirements for a device that uses a machine-learning algorithm to generate a postural stability score – the ZIBRIO Stability Scale. The results of the simulation are described, as is the application to sensor selection in preparation for manufacturing of the device. Other medical device developers may be able to use this method or similar methods in their requirements engineering process.</p></div>\",\"PeriodicalId\":73507,\"journal\":{\"name\":\"IPEM-translation\",\"volume\":\"1 \",\"pages\":\"Article 100004\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667258822000024/pdfft?md5=1060943e90dad53c7031b747d051df78&pid=1-s2.0-S2667258822000024-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IPEM-translation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667258822000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPEM-translation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667258822000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能和机器学习应用在医疗保健行业越来越普遍。在某些情况下,医疗设备使用传感器收集的数据输入算法,生成分数或风险评估,用于通知患者护理。确定传感器精度要求的过程将确保算法生成可靠的分数,这不是直截了当的或定义明确的。在本文中,我们描述了一种基于模拟的方法来描述设备的传感器精度要求,该设备使用机器学习算法来生成姿势稳定性评分- ZIBRIO稳定性量表。本文描述了仿真的结果,以及在传感器选择中的应用,为设备的制造做准备。其他医疗设备开发人员可以在其需求工程过程中使用此方法或类似方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing sensor accuracy requirements in an artificial intelligence-enabled medical device

Artificial intelligence and machine learning applications are increasingly prevalent in the healthcare industry. In some cases, medical devices use sensor-collected data to feed into algorithms which generate scores or risk assessments that are used to inform patient care. The process of determining sensor accuracy requirements which will ensure that the algorithm generates reliable scores is not straightforward or well-defined. In this paper, we describe a simulation-based method to characterize sensor accuracy requirements for a device that uses a machine-learning algorithm to generate a postural stability score – the ZIBRIO Stability Scale. The results of the simulation are described, as is the application to sensor selection in preparation for manufacturing of the device. Other medical device developers may be able to use this method or similar methods in their requirements engineering process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IPEM-translation
IPEM-translation Medicine and Dentistry (General)
自引率
0.00%
发文量
0
审稿时长
63 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信