双曲动力系统的副微分方法及其应用

IF 0.8 Q2 MATHEMATICS
Y. Bonthonneau, C. Guillarmou, Thibault de Poyferr'e
{"title":"双曲动力系统的副微分方法及其应用","authors":"Y. Bonthonneau, C. Guillarmou, Thibault de Poyferr'e","doi":"10.2140/tunis.2022.4.673","DOIUrl":null,"url":null,"abstract":". We develop a paradifferential approach for studying non-smooth hyperbolic dynamics on manifolds and related non-linear PDE from a microlocal point of view. As an application, we describe the microlocal regularity, i.e the H s wave-front set for all s , of the unstable bundle E u for an Anosov flow. We also recover rigidity results of Hurder-Katok and Hasselblatt in the Sobolev class rather than H¨older: there is s 0 > 0 such that if E u has H s regularity for s > s 0 then it is smooth (with s 0 = 2 for volume preserving 3-dimensional Anosov flows). It is also shown in the Appendix that it can be applied to deal with non-smooth flows and potentials. This work could serve as a toolbox for other applications.","PeriodicalId":36030,"journal":{"name":"Tunisian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A paradifferential approach for hyperbolic dynamical systems and applications\",\"authors\":\"Y. Bonthonneau, C. Guillarmou, Thibault de Poyferr'e\",\"doi\":\"10.2140/tunis.2022.4.673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We develop a paradifferential approach for studying non-smooth hyperbolic dynamics on manifolds and related non-linear PDE from a microlocal point of view. As an application, we describe the microlocal regularity, i.e the H s wave-front set for all s , of the unstable bundle E u for an Anosov flow. We also recover rigidity results of Hurder-Katok and Hasselblatt in the Sobolev class rather than H¨older: there is s 0 > 0 such that if E u has H s regularity for s > s 0 then it is smooth (with s 0 = 2 for volume preserving 3-dimensional Anosov flows). It is also shown in the Appendix that it can be applied to deal with non-smooth flows and potentials. This work could serve as a toolbox for other applications.\",\"PeriodicalId\":36030,\"journal\":{\"name\":\"Tunisian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunisian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/tunis.2022.4.673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunisian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/tunis.2022.4.673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

。从微局部的角度出发,提出了一种研究流形上非光滑双曲动力学及相关非线性偏微分方程的准微分方法。作为应用,我们描述了一个Anosov流的不稳定束E u的微局部正则性,即所有s的H s波前集。我们还在Sobolev类中恢复了Hurder-Katok和Hasselblatt的刚性结果,而不是H¨older:存在s 0 > 0这样,如果E u对s > s 0具有H s正则性,则它是光滑的(对于体积保持的三维Anosov流,s 0 = 2)。在附录中也表明,它可以应用于处理非光滑流动和势。这项工作可以作为其他应用的工具箱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A paradifferential approach for hyperbolic dynamical systems and applications
. We develop a paradifferential approach for studying non-smooth hyperbolic dynamics on manifolds and related non-linear PDE from a microlocal point of view. As an application, we describe the microlocal regularity, i.e the H s wave-front set for all s , of the unstable bundle E u for an Anosov flow. We also recover rigidity results of Hurder-Katok and Hasselblatt in the Sobolev class rather than H¨older: there is s 0 > 0 such that if E u has H s regularity for s > s 0 then it is smooth (with s 0 = 2 for volume preserving 3-dimensional Anosov flows). It is also shown in the Appendix that it can be applied to deal with non-smooth flows and potentials. This work could serve as a toolbox for other applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunisian Journal of Mathematics
Tunisian Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信