Sultana Rahman , Burcin Bozal-Palabiyik , Didem Nur Unal , Cem Erkmen , Muhammad Siddiq , Afzal Shah , Bengi Uslu
{"title":"分子印迹聚合物(MIPs)结合纳米材料在环境污染物电化学传感中的应用","authors":"Sultana Rahman , Burcin Bozal-Palabiyik , Didem Nur Unal , Cem Erkmen , Muhammad Siddiq , Afzal Shah , Bengi Uslu","doi":"10.1016/j.teac.2022.e00176","DOIUrl":null,"url":null,"abstract":"<div><p><span>It is known that environmental pollution, which is the result of human-induced industrial, domestic, and agricultural practices, poses a threat to our planet. The increasing human population caused several problems such as water and air pollution, which have reached levels threatening human health. There are many different hazardous chemical and biological environmental pollutants in soil, air, and wastewater. It is extremely important to evaluate these health risks and detect these pollutants. The use of electrochemical methods for the detection of environmental pollutants comes to the forefront recently with advantages such as sensitivity, fast response, low cost, and practical use by miniaturization. The molecular imprinting technique is a popular method used for substance analysis by creating a cavity specific to the substance to be analyzed with the polymer used. The use of </span>molecularly imprinted polymer<span> in electrochemical methods and its modification with various nanomaterials bring advantages such as high selectivity, robustness, and sensitivity to electrochemical sensors. Here, the sensitive determination of environmental pollutants with different nanomaterial-modified molecularly imprinted polymer-based electrochemical sensors, the use of different polymerization techniques, and nano-sized modification agents in sensors are evaluated by reviewing recent studies in the literature.</span></p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"36 ","pages":"Article e00176"},"PeriodicalIF":11.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants\",\"authors\":\"Sultana Rahman , Burcin Bozal-Palabiyik , Didem Nur Unal , Cem Erkmen , Muhammad Siddiq , Afzal Shah , Bengi Uslu\",\"doi\":\"10.1016/j.teac.2022.e00176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>It is known that environmental pollution, which is the result of human-induced industrial, domestic, and agricultural practices, poses a threat to our planet. The increasing human population caused several problems such as water and air pollution, which have reached levels threatening human health. There are many different hazardous chemical and biological environmental pollutants in soil, air, and wastewater. It is extremely important to evaluate these health risks and detect these pollutants. The use of electrochemical methods for the detection of environmental pollutants comes to the forefront recently with advantages such as sensitivity, fast response, low cost, and practical use by miniaturization. The molecular imprinting technique is a popular method used for substance analysis by creating a cavity specific to the substance to be analyzed with the polymer used. The use of </span>molecularly imprinted polymer<span> in electrochemical methods and its modification with various nanomaterials bring advantages such as high selectivity, robustness, and sensitivity to electrochemical sensors. Here, the sensitive determination of environmental pollutants with different nanomaterial-modified molecularly imprinted polymer-based electrochemical sensors, the use of different polymerization techniques, and nano-sized modification agents in sensors are evaluated by reviewing recent studies in the literature.</span></p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"36 \",\"pages\":\"Article e00176\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221415882200023X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221415882200023X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Molecularly imprinted polymers (MIPs) combined with nanomaterials as electrochemical sensing applications for environmental pollutants
It is known that environmental pollution, which is the result of human-induced industrial, domestic, and agricultural practices, poses a threat to our planet. The increasing human population caused several problems such as water and air pollution, which have reached levels threatening human health. There are many different hazardous chemical and biological environmental pollutants in soil, air, and wastewater. It is extremely important to evaluate these health risks and detect these pollutants. The use of electrochemical methods for the detection of environmental pollutants comes to the forefront recently with advantages such as sensitivity, fast response, low cost, and practical use by miniaturization. The molecular imprinting technique is a popular method used for substance analysis by creating a cavity specific to the substance to be analyzed with the polymer used. The use of molecularly imprinted polymer in electrochemical methods and its modification with various nanomaterials bring advantages such as high selectivity, robustness, and sensitivity to electrochemical sensors. Here, the sensitive determination of environmental pollutants with different nanomaterial-modified molecularly imprinted polymer-based electrochemical sensors, the use of different polymerization techniques, and nano-sized modification agents in sensors are evaluated by reviewing recent studies in the literature.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.