半正则连续算子的极值与区间交换变换的编码

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2023-02-11 DOI:10.1112/mtk.12185
Alessandro De Luca, Marcia Edson, Luca Q. Zamboni
{"title":"半正则连续算子的极值与区间交换变换的编码","authors":"Alessandro De Luca,&nbsp;Marcia Edson,&nbsp;Luca Q. Zamboni","doi":"10.1112/mtk.12185","DOIUrl":null,"url":null,"abstract":"<p>Given a set <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathbb {A}$</annotation>\n </semantics></math> consisting of positive integers <math>\n <semantics>\n <mrow>\n <msub>\n <mi>a</mi>\n <mn>1</mn>\n </msub>\n <mo>&lt;</mo>\n <msub>\n <mi>a</mi>\n <mn>2</mn>\n </msub>\n <mo>&lt;</mo>\n <mi>⋯</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>a</mi>\n <mi>k</mi>\n </msub>\n </mrow>\n <annotation>$a_1&lt;a_2&lt;\\cdots &lt;a_k$</annotation>\n </semantics></math> and a <i>k</i>-term partition <math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>:</mo>\n <msub>\n <mi>n</mi>\n <mn>1</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n <mo>+</mo>\n <mi>⋯</mi>\n <mo>+</mo>\n <msub>\n <mi>n</mi>\n <mi>k</mi>\n </msub>\n <mo>=</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$P: n_1+n_2 + \\cdots + n_k=n$</annotation>\n </semantics></math>, find the extremal denominators of the regular and semi-regular continued fraction <math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mn>0</mn>\n <mo>;</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n <annotation>$[0;x_1,x_2,\\ldots ,x_n]$</annotation>\n </semantics></math> with partial quotients <math>\n <semantics>\n <mrow>\n <msub>\n <mi>x</mi>\n <mi>i</mi>\n </msub>\n <mo>∈</mo>\n <mi>A</mi>\n </mrow>\n <annotation>$x_i\\in \\mathbb {A}$</annotation>\n </semantics></math> and where each <math>\n <semantics>\n <msub>\n <mi>a</mi>\n <mi>i</mi>\n </msub>\n <annotation>$a_i$</annotation>\n </semantics></math> occurs precisely <math>\n <semantics>\n <msub>\n <mi>n</mi>\n <mi>i</mi>\n </msub>\n <annotation>$n_i$</annotation>\n </semantics></math> times in the sequence <math>\n <semantics>\n <mrow>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$x_1,x_2,\\ldots ,x_n$</annotation>\n </semantics></math>. In 1983, G. Ramharter gave an explicit description of the extremal arrangements of the regular continued fraction and the minimizing arrangement for the semi-regular continued fraction and showed that in each case the arrangement is unique up to reversal and independent of the actual values of the positive integers <math>\n <semantics>\n <msub>\n <mi>a</mi>\n <mi>i</mi>\n </msub>\n <annotation>$a_i$</annotation>\n </semantics></math>. However, an explicit determination of a maximizing arrangement for the semi-regular continuant turned out to be substantially more difficult. Ramharter conjectured that as in the other three cases, the maximizing arrangement is unique (up to reversal) and depends only on the partition <i>P</i> and not on the actual values of the <math>\n <semantics>\n <msub>\n <mi>a</mi>\n <mi>i</mi>\n </msub>\n <annotation>$a_i$</annotation>\n </semantics></math>. He further verified the conjecture in the special case of a binary alphabet. In this paper, we confirm Ramharter's conjecture for sets <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathbb {A}$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$|\\mathbb {A}|=3$</annotation>\n </semantics></math> and give an algorithmic procedure for constructing the unique maximizing arrangement. We also show that Ramharter's conjecture fails for sets with <math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n <mo>⩾</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$|\\mathbb {A}|\\geqslant 4$</annotation>\n </semantics></math> in that the maximizing arrangement is in general neither unique nor independent of the values of the digits in <math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathbb {A}$</annotation>\n </semantics></math>. The central idea is that the extremal arrangements satisfy a strong combinatorial condition. This combinatorial condition may also be stated more or less verbatum in the context of infinite sequences on an ordered set. We show that in the context of bi-infinite binary words, this condition coincides with the Markoff property, discovered by A. A. Markoff in 1879 in his study of minima of binary quadratic forms. We further show that this same combinatorial condition is the fundamental property which describes the orbit structure of the natural codings of points under a symmetric <i>k</i>-interval exchange transformation.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extremal values of semi-regular continuants and codings of interval exchange transformations\",\"authors\":\"Alessandro De Luca,&nbsp;Marcia Edson,&nbsp;Luca Q. Zamboni\",\"doi\":\"10.1112/mtk.12185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a set <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathbb {A}$</annotation>\\n </semantics></math> consisting of positive integers <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>a</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>&lt;</mo>\\n <msub>\\n <mi>a</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>&lt;</mo>\\n <mi>⋯</mi>\\n <mo>&lt;</mo>\\n <msub>\\n <mi>a</mi>\\n <mi>k</mi>\\n </msub>\\n </mrow>\\n <annotation>$a_1&lt;a_2&lt;\\\\cdots &lt;a_k$</annotation>\\n </semantics></math> and a <i>k</i>-term partition <math>\\n <semantics>\\n <mrow>\\n <mi>P</mi>\\n <mo>:</mo>\\n <msub>\\n <mi>n</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>+</mo>\\n <mi>⋯</mi>\\n <mo>+</mo>\\n <msub>\\n <mi>n</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>n</mi>\\n </mrow>\\n <annotation>$P: n_1+n_2 + \\\\cdots + n_k=n$</annotation>\\n </semantics></math>, find the extremal denominators of the regular and semi-regular continued fraction <math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mn>0</mn>\\n <mo>;</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$[0;x_1,x_2,\\\\ldots ,x_n]$</annotation>\\n </semantics></math> with partial quotients <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>x</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>∈</mo>\\n <mi>A</mi>\\n </mrow>\\n <annotation>$x_i\\\\in \\\\mathbb {A}$</annotation>\\n </semantics></math> and where each <math>\\n <semantics>\\n <msub>\\n <mi>a</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$a_i$</annotation>\\n </semantics></math> occurs precisely <math>\\n <semantics>\\n <msub>\\n <mi>n</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$n_i$</annotation>\\n </semantics></math> times in the sequence <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>x</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>x</mi>\\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation>$x_1,x_2,\\\\ldots ,x_n$</annotation>\\n </semantics></math>. In 1983, G. Ramharter gave an explicit description of the extremal arrangements of the regular continued fraction and the minimizing arrangement for the semi-regular continued fraction and showed that in each case the arrangement is unique up to reversal and independent of the actual values of the positive integers <math>\\n <semantics>\\n <msub>\\n <mi>a</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$a_i$</annotation>\\n </semantics></math>. However, an explicit determination of a maximizing arrangement for the semi-regular continuant turned out to be substantially more difficult. Ramharter conjectured that as in the other three cases, the maximizing arrangement is unique (up to reversal) and depends only on the partition <i>P</i> and not on the actual values of the <math>\\n <semantics>\\n <msub>\\n <mi>a</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$a_i$</annotation>\\n </semantics></math>. He further verified the conjecture in the special case of a binary alphabet. In this paper, we confirm Ramharter's conjecture for sets <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathbb {A}$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>A</mi>\\n <mo>|</mo>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$|\\\\mathbb {A}|=3$</annotation>\\n </semantics></math> and give an algorithmic procedure for constructing the unique maximizing arrangement. We also show that Ramharter's conjecture fails for sets with <math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>A</mi>\\n <mo>|</mo>\\n <mo>⩾</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$|\\\\mathbb {A}|\\\\geqslant 4$</annotation>\\n </semantics></math> in that the maximizing arrangement is in general neither unique nor independent of the values of the digits in <math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathbb {A}$</annotation>\\n </semantics></math>. The central idea is that the extremal arrangements satisfy a strong combinatorial condition. This combinatorial condition may also be stated more or less verbatum in the context of infinite sequences on an ordered set. We show that in the context of bi-infinite binary words, this condition coincides with the Markoff property, discovered by A. A. Markoff in 1879 in his study of minima of binary quadratic forms. We further show that this same combinatorial condition is the fundamental property which describes the orbit structure of the natural codings of points under a symmetric <i>k</i>-interval exchange transformation.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12185\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12185","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

给定由正整数a1组成的集合a$\mathbb{a}$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal values of semi-regular continuants and codings of interval exchange transformations

Given a set A $\mathbb {A}$ consisting of positive integers a 1 < a 2 < < a k $a_1<a_2<\cdots <a_k$ and a k-term partition P : n 1 + n 2 + + n k = n $P: n_1+n_2 + \cdots + n_k=n$ , find the extremal denominators of the regular and semi-regular continued fraction [ 0 ; x 1 , x 2 , , x n ] $[0;x_1,x_2,\ldots ,x_n]$ with partial quotients x i A $x_i\in \mathbb {A}$ and where each a i $a_i$ occurs precisely n i $n_i$ times in the sequence x 1 , x 2 , , x n $x_1,x_2,\ldots ,x_n$ . In 1983, G. Ramharter gave an explicit description of the extremal arrangements of the regular continued fraction and the minimizing arrangement for the semi-regular continued fraction and showed that in each case the arrangement is unique up to reversal and independent of the actual values of the positive integers a i $a_i$ . However, an explicit determination of a maximizing arrangement for the semi-regular continuant turned out to be substantially more difficult. Ramharter conjectured that as in the other three cases, the maximizing arrangement is unique (up to reversal) and depends only on the partition P and not on the actual values of the a i $a_i$ . He further verified the conjecture in the special case of a binary alphabet. In this paper, we confirm Ramharter's conjecture for sets A $\mathbb {A}$ with | A | = 3 $|\mathbb {A}|=3$ and give an algorithmic procedure for constructing the unique maximizing arrangement. We also show that Ramharter's conjecture fails for sets with | A | 4 $|\mathbb {A}|\geqslant 4$ in that the maximizing arrangement is in general neither unique nor independent of the values of the digits in A $\mathbb {A}$ . The central idea is that the extremal arrangements satisfy a strong combinatorial condition. This combinatorial condition may also be stated more or less verbatum in the context of infinite sequences on an ordered set. We show that in the context of bi-infinite binary words, this condition coincides with the Markoff property, discovered by A. A. Markoff in 1879 in his study of minima of binary quadratic forms. We further show that this same combinatorial condition is the fundamental property which describes the orbit structure of the natural codings of points under a symmetric k-interval exchange transformation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信