{"title":"pmHAS酶的结构分析和工程设计以提高其功能性能:一项硅片研究","authors":"Alireza Zakeri , Sepideh Khoshsorour , Mohsen Karami Fath , Navid Pourzardosht , Faezeh Fazeli , Saeed Khalili","doi":"10.1080/07328303.2020.1821041","DOIUrl":null,"url":null,"abstract":"<div><p>The <em>Pasteurella multocida</em> hyaluronic acid synthase (pmHAS) is reported to be able to solve the problem of hyaluronic acid (HA) polydispersity, while simplifying its purification process. In the present study, we tried to design a mutant pmHAS enzyme with improved functional properties. In this regard, several mutations were predicted and exerted within the active site of the enzyme. The obtained results showed that the mutant enzyme was more stable and was able to bind to its ligands with higher affinity. Given our results, the mutated enzyme could be used to produce HA more efficiently and prevent the breakdown of HA.</p></div>","PeriodicalId":15311,"journal":{"name":"Journal of Carbohydrate Chemistry","volume":"39 7","pages":"Pages 354-373"},"PeriodicalIF":1.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07328303.2020.1821041","citationCount":"1","resultStr":"{\"title\":\"Structural analyses and engineering of the pmHAS enzyme to improve its functional performance: An in silico study\",\"authors\":\"Alireza Zakeri , Sepideh Khoshsorour , Mohsen Karami Fath , Navid Pourzardosht , Faezeh Fazeli , Saeed Khalili\",\"doi\":\"10.1080/07328303.2020.1821041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The <em>Pasteurella multocida</em> hyaluronic acid synthase (pmHAS) is reported to be able to solve the problem of hyaluronic acid (HA) polydispersity, while simplifying its purification process. In the present study, we tried to design a mutant pmHAS enzyme with improved functional properties. In this regard, several mutations were predicted and exerted within the active site of the enzyme. The obtained results showed that the mutant enzyme was more stable and was able to bind to its ligands with higher affinity. Given our results, the mutated enzyme could be used to produce HA more efficiently and prevent the breakdown of HA.</p></div>\",\"PeriodicalId\":15311,\"journal\":{\"name\":\"Journal of Carbohydrate Chemistry\",\"volume\":\"39 7\",\"pages\":\"Pages 354-373\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07328303.2020.1821041\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Carbohydrate Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S073283032200129X\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Carbohydrate Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S073283032200129X","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural analyses and engineering of the pmHAS enzyme to improve its functional performance: An in silico study
The Pasteurella multocida hyaluronic acid synthase (pmHAS) is reported to be able to solve the problem of hyaluronic acid (HA) polydispersity, while simplifying its purification process. In the present study, we tried to design a mutant pmHAS enzyme with improved functional properties. In this regard, several mutations were predicted and exerted within the active site of the enzyme. The obtained results showed that the mutant enzyme was more stable and was able to bind to its ligands with higher affinity. Given our results, the mutated enzyme could be used to produce HA more efficiently and prevent the breakdown of HA.
期刊介绍:
The Journal of Carbohydrate Chemistry serves as an international forum for research advances involving the chemistry and biology of carbohydrates. The following aspects are considered to fall within the scope of this journal:
-novel synthetic methods involving carbohydrates, oligosaccharides, and glycoconjugates-
the use of chemical methods to address aspects of glycobiology-
spectroscopic and crystallographic structure studies of carbohydrates-
computational and molecular modeling studies-
physicochemical studies involving carbohydrates and the chemistry and biochemistry of carbohydrate polymers.