深层地热项目风险评估工具的开发:在巴黎盆地和上莱茵地堑的应用实例

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS
Julie Maury, Virginie Hamm, Annick Loschetter, Thomas Le Guenan
{"title":"深层地热项目风险评估工具的开发:在巴黎盆地和上莱茵地堑的应用实例","authors":"Julie Maury,&nbsp;Virginie Hamm,&nbsp;Annick Loschetter,&nbsp;Thomas Le Guenan","doi":"10.1186/s40517-022-00238-y","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents the development of a tool to perform risk assessment for deep geothermal projects. The tool is aimed at project developers to help them present their project to local authority, decision-makers and financers so they can highlight how they take into account risks and consider mitigation measures to minimize them. The main criteria for this tool are the simplicity of use, the quality of presentation and flexibility. It is based on results from the H2020 GEORISK project that identified risks that apply to geothermal projects and proposed insurance schemes all over Europe. A characteristic of this tool is that it considers all the categories of risks that a project may face, including geological, technical, environmental risks as well as risks related to the social, economic and political contexts. The tool can be customized: selection of risks in a list that can be completed, adaptable rating scheme for risk analysis, possibility to choose the best display for results depending on the user needs. Two case applications are presented, one in the Paris Basin considering a doublet targeting the Upper Trias, a geological layer that presents some technical challenges; and one in the Upper Rhine graben targeting a fault zone, where the risk of induced seismicity must be carefully considered. A posteriori risk assessment highlights the main issues with these types of projects, and the comparison between the two cases emphasizes the flexibility of the tool, as well as, the different ways to present the results depending on the objective of the analyses.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":"10 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00238-y","citationCount":"0","resultStr":"{\"title\":\"Development of a risk assessment tool for deep geothermal projects: example of application in the Paris Basin and Upper Rhine graben\",\"authors\":\"Julie Maury,&nbsp;Virginie Hamm,&nbsp;Annick Loschetter,&nbsp;Thomas Le Guenan\",\"doi\":\"10.1186/s40517-022-00238-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents the development of a tool to perform risk assessment for deep geothermal projects. The tool is aimed at project developers to help them present their project to local authority, decision-makers and financers so they can highlight how they take into account risks and consider mitigation measures to minimize them. The main criteria for this tool are the simplicity of use, the quality of presentation and flexibility. It is based on results from the H2020 GEORISK project that identified risks that apply to geothermal projects and proposed insurance schemes all over Europe. A characteristic of this tool is that it considers all the categories of risks that a project may face, including geological, technical, environmental risks as well as risks related to the social, economic and political contexts. The tool can be customized: selection of risks in a list that can be completed, adaptable rating scheme for risk analysis, possibility to choose the best display for results depending on the user needs. Two case applications are presented, one in the Paris Basin considering a doublet targeting the Upper Trias, a geological layer that presents some technical challenges; and one in the Upper Rhine graben targeting a fault zone, where the risk of induced seismicity must be carefully considered. A posteriori risk assessment highlights the main issues with these types of projects, and the comparison between the two cases emphasizes the flexibility of the tool, as well as, the different ways to present the results depending on the objective of the analyses.</p></div>\",\"PeriodicalId\":48643,\"journal\":{\"name\":\"Geothermal Energy\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00238-y\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermal Energy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40517-022-00238-y\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00238-y","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于深层地热项目风险评估的工具的开发。该工具旨在帮助项目开发商向地方当局、决策者和融资者介绍他们的项目,以便他们能够强调他们如何考虑风险并考虑缓解措施以尽量减少风险。该工具的主要标准是使用简单性、表示质量和灵活性。它基于H2020 GEORISK项目的结果,该项目确定了适用于整个欧洲地热项目的风险,并提出了保险计划。该工具的一个特点是它考虑了项目可能面临的所有类别的风险,包括地质、技术、环境风险以及与社会、经济和政治背景相关的风险。该工具可自定义:在可完成的列表中选择风险,可适应的风险分析评级方案,根据用户需求选择最佳显示结果的可能性。介绍了两个应用案例,一个是在巴黎盆地,考虑针对上三叠统的双重井,这是一个地质层,存在一些技术挑战;另一个位于上莱茵河地堑,目标是断裂带,在那里必须仔细考虑诱发地震活动的风险。后验风险评估强调了这些类型项目的主要问题,两种情况之间的比较强调了工具的灵活性,以及根据分析目标呈现结果的不同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a risk assessment tool for deep geothermal projects: example of application in the Paris Basin and Upper Rhine graben

This paper presents the development of a tool to perform risk assessment for deep geothermal projects. The tool is aimed at project developers to help them present their project to local authority, decision-makers and financers so they can highlight how they take into account risks and consider mitigation measures to minimize them. The main criteria for this tool are the simplicity of use, the quality of presentation and flexibility. It is based on results from the H2020 GEORISK project that identified risks that apply to geothermal projects and proposed insurance schemes all over Europe. A characteristic of this tool is that it considers all the categories of risks that a project may face, including geological, technical, environmental risks as well as risks related to the social, economic and political contexts. The tool can be customized: selection of risks in a list that can be completed, adaptable rating scheme for risk analysis, possibility to choose the best display for results depending on the user needs. Two case applications are presented, one in the Paris Basin considering a doublet targeting the Upper Trias, a geological layer that presents some technical challenges; and one in the Upper Rhine graben targeting a fault zone, where the risk of induced seismicity must be carefully considered. A posteriori risk assessment highlights the main issues with these types of projects, and the comparison between the two cases emphasizes the flexibility of the tool, as well as, the different ways to present the results depending on the objective of the analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信